Bionanocomposite Films Based on Chitosan with Bentonite Clay and Polyvinyl Alcohol

Authors

  • P.A. Baimyrza Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, Kazakhstan
  • R.S. Iminova Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, Kazakhstan
  • B.M. Kudaibergenova Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, Kazakhstan
  • G.Zh. Kairalapova Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1470

Keywords:

Chitosan nanowhisker, Bentonite clay, Polyvinyl alcohol, Films, Bionanocomposites

Abstract

Nanocomposite films based on chitosan nanowhisker (CsW) with ionic and nonorganic polymers were prepared and studied on the swelling and mechanical properties. Сhitosan nanowhiskers were made from α-chitin by using a top-down approach. Ionic polymer polyvinyl alcohol (PVA) and nonorganic bentonite clay (BC) were employed to prepare chitosan nanowhisker bionanocomposite film taking into account their biocompatibility and nontoxicity. Fourier transform infrared spectroscopy analysis, swelling degree measurements and mechanical tests were employed to analyze the influence of significant PVA and bentonite amounts on the film properties. The mechanical strength was found to increase with the rise of the PVA concentration. This is an advantage for producing wound dressing material. The increase in BC concentration in the film resulted in high film stability in water and different mediums and in higher water absorbance than that of CsW/PVA film. However, the highest swelling degree was for a film of CsW itself but the mechanical strength was lower and insufficient to use it for the wound dressing material. Thus, the incorporation of PVA and BC into chitosan nanowhisker can enhance the swelling capacity and mechanical strength.

References

(1). Pormohammad, N.K. Monych, S. Ghosh, D.L. Turner, et al., Antibiotics 10 (2021) 473. Crossref

(2). J. Li, R. Cha, K. Mou, X. Zhao, et al., Adv. Healthc. Mater. 7 (2018). Crossref

(3). S. Rashki, K. Asgarpour, H. Tarrahimofrad, M. Hashemipour, et al., Carbohyd. Polym. 251 (2021) 117108. Crossref

(4). L. Djekic, M. Martinović, A. Ćirić, J. Fraj, Pharm. Dev. Technol. 25 (2020) 332–339. Crossref

(5). S.P. Miguel, A.F. Moreira, I.J. Correia, Int. J. Biol. Macromol. 127 (2019) 460–475. Crossref

(6). L.J. Wijayadi, T.R. Rusli, IOP Conf. Ser.: Mater. Sci. Eng. 508 (2019). Crossref

(7). S. Ifuku, H. Saimoto, Nanoscale 4 (2012) 3308–3318. Crossref

(8). K. Azuma, S. Ifuku, T. Osaki, Y. Okamoto, et al., J. Biomed. Nanotechnol. 10 (2014) 2891–2920. Crossref

(9). T.H. Tran, H.L. Nguyen, D.S. Hwang, J.Y. Lee, et al., Carbohyd. Polym. 205 (2019) 392–400. Crossref

(10). N.A. Figurovsky, Sedimentometric analysis. Academy of Sciences of the USSR, Moscow, 1948, 336 p. (in Russian)

(11). Sh. Zhumagalieva, R. Iminova, G. Kairalapova, M. Beysebekov, et al., Eurasian Chem.-Technol. J. 19 (2017) 279–288. Crossref

(12). Sh. Zhumagaliyeva, R. Iminova, G. Kairalapova, Zh. Abilov, Journal of Chemical Technology and Metallurgy 54 (2019) 595–602.

(13). A. Sathiyaseelan, K. Saravanakumar, A.V.A. Mariadoss, M.-H. Wang, Antibiotics 10 (2021) 524. Crossref

(14). P. Zou, W.-H. Lee, Z. Gao, D. Qin, et al., Carbohyd. Polym. 232 (2020) 115786. Crossref

(15). M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, et al., Carbohyd. Polym. 207 (2019) 542–554. Crossref

(16). G. Yuan, B. Theng, J. Churchman, W. Gates, Clays and Clay Minerals for Pollution Control. In: Developments in clay science. 2013. P. 587–644. Crossref

(17). S. Kakaei, E.S. Khameneh, M.H. Hosseini, M.M. Moharreri, Int. J. Environ. Sci. Technol. 17 (2020) 2043–2058. Crossref

(18). J.-J. Yee, C. Vic Justo Arida, C.M. Futalan, M.D.G. de Luna, et al., Molecules 24 (2019) 2464. Crossref

(19). Z. Zhang, T. Li, B. Chen, S. Wang, et al., J. Mater. Sci. 52 (2017) 10614–10623. Crossref

(20). Danila Merino, A.Y. Mansilla, A.C. Claudia, V.A. Alejandra, J. Agric. Food Chem. 66 (2018) 3101–3109. Crossref

(21). C.-M. Hristodor, N. Vrinceanu, P. Aurel, O. Novac, et al., Env. Eng. Manag. J. 11 (2012) 573–578. Crossref

(22). E.I. Kulish, V.V. Chernova, S.V. Kolesov. Vestnik Bashkirskogo universiteta [Bulletin of the Bashkir University]. 12 (2007) 23–25. (in Russian)

(23). C.R.V. Prasad, P.H.P. Reddy, V. Ramana Murthy, P.V. Sivapullaiah, Soils Found. 58 (2018) 110–121. Crossref

(24). Sh.B. Batalova, Physico-chemical bases of preparation and application of catalysts and adsorbents from bentonites, Almaty: Science. 1986. P. 168. (in Russian)

Downloads

Published

2022-12-12

How to Cite

Baimyrza, P., Iminova, R., Kudaibergenova, B., & Kairalapova, G. (2022). Bionanocomposite Films Based on Chitosan with Bentonite Clay and Polyvinyl Alcohol. Eurasian Chemico-Technological Journal, 24(4), 267‒275. https://doi.org/10.18321/ectj1470

Issue

Section

Articles