Preparation of C60 Fullerene Nanowhisker–CuS Nanoparticle Composites and Photocatalyst for Rhodamine B Degradation under Blue Light Emitting Diode Irradiation

Authors

  • S.W. Ko Department of Convergence Science, Graduate School, Sahmyook University, 815, Seoul 139-742, South Korea
  • H. Chung Department of Convergence Science, Graduate School, Sahmyook University, 815, Seoul 139-742, South Korea

DOI:

https://doi.org/10.18321/ectj1496

Keywords:

Liquid-liquid interfacial precipitation, C60 FNW-CuS nanoparticle composites, Photocatalytic degradation, Rhodamine B, Blue LED irradiation

Abstract

The liquid-liquid interfacial precipitation (LLIP) approach was used to synthesize the C60 fullerene nanowhisker (FNW)–CuS nanoparticle composites utilizing a CuS nanoparticle solution, C60-saturated toluene, and isopropyl alcohol (IPA). Powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the product of C60 FNW–CuS nanoparticle composites. These were also utilized to photocatalytic degradation of rhodamine B (RhB) under blue light emitting diode (LED) irradiation at 450 nm. Also, UV–vis spectroscopy was used to confirm the photocatalytic degradation activity of RhB over the C60 FNW–CuS nanoparticle composites. The percentage of photocatalytic degradation of RhB was shown to be 95.148%. The kinetics study for photocatalytic degradation of RhB using C60 FNW–CuS nanoparticle composites followed a pseudo-first-order reaction rate law. C60 FNW–CuS nanoparticle composites as photocatalyst have a rate constant of 4.82×10-2 min-1 at 25 °C.

References

(1). M. Saranya, R. Ramachandran, E.J.J. Samuel, et al., Powder Technol. 279 (2015) 209‒220. Crossref

(2). M. Pal, N.R. Mathews, E. Sanchez-Mora, et al., J. Nanoparticle Res. 17 (2015). Crossref

(3). G.M. Neelgund, A. Oki, Mater. Res. Bull. 129 (2020) 110911. Crossref

(4). M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69‒96. Crossref

(5). X. Meng, G. Tian, Y. Chen, et al., Cryst. Eng. Comm. 15 (2013) 5144‒5149. Crossref

(6). A. Fujishima, K. Honda, Nature 238 (1972) 37‒38. Crossref

(7). A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C. 1 (2000) 1‒21. Crossref

(8). D. Chenchik, J. Jandosov, Eurasian Chem.- Technol. J. 19 (2017) 191‒195. Crossref

(9). S. Yadav, P.K. Bajpai, Nano-Struct. Nano- Objects 10 (2017) 151‒158. Crossref

(10). A. Singh, R. Manivannan, S.N. Victoria, Arab. J. Chem. 12 (2019) 2439‒2447. Crossref

(11). M. Jain, D.G. Babar, S.S. Garje, Appl. Nanosci. 9 (2019) 353‒367. Crossref

(12). D. Rohilla, N. Kaur, A. Shanavas, S. Chaudhary, Chemosphere 277 (2021) 130202. Crossref

(13). S.S.T. Selvi, J.M. Linet, S. Sagadevan, J. Exp. Nanosci. 13 (2018) 130‒143. Crossref

(14). Y. Zhai, M. Shim, Chem. Mater. 29 (2017) 2390‒2397. Crossref

(15). L. Isac, I. Popovici, A. Enesca, A. Duta, Energy Procedia 2 (2010) 71‒78. Crossref

(16). S.I. Raj, A. Jaiswal, I. Uddin, RSC Adv. 10 (2020) 14050‒14059. Crossref

(17). M. Baláž, E. Dutková, Z. Bujňáková, et al., J. Alloys Compd. 746 (2018) 576‒582. Crossref

(18). T. Wakahara, K. Miyazawa, Y. Nemoto, O. Ito, Carbon 49 (2011) 4644‒4649. Crossref

(19). K. Miyazawa, K. Hamamoto, J. Mater. Sci. Res. 17 (2002) 2205‒2208. Crossref

(20). K. Miyazawa, K. Hamamoto, S. Nagata, T. Suga, J. Mater. Sci. Res. 18 (2003) 1096‒1103. Crossref

(21). T. Wakahara, M. Sathish, K. Miyazawa, T. Sasaki, Nano 3 (2008) 351‒354. Crossref

(22). K. Miyazawa, J. Nanosci. Nanotechnol. 9 (2009) 41‒50. Crossref

(23). J.W. Ko, W.B. Ko, Mater. Trans. 57 (2016) 2122‒2126. Crossref

(24). J.W. Ko, K. Miyazawa, Y. Tanaka, W.B. Ko, Fuller. Nanotub. Carbon Nano¬structures 28 (2020) 794‒798. Crossref

(25). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 25 (2017) 710‒715. Crossref

(26). K. Miyazawa, Y. Kuwasaki, A. Obayashi, M. Kuwabara, J. Mater. Sci. Res. 17 (2002) 83‒88. Crossref

(27). F. Sica, S. Adinolfi, L. Vitagliano, et al., J. Cryst. Growth 168 (1996) 192‒197. Crossref

(28). B. Xing, C. Shi, C. Zhang, et al., J. Nanomater. 2016 (2016) 8393648. Crossref

(29). Y. Wang, F. Jiang, J. Chen, et al., J. Nanomater. 10 (2020) 178. Crossref

(30). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 27 (2019) 895‒898. Crossref

(31). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 30 (2022) 693‒698. Crossref

(32). J. Yu, T. Ma, G. Liu, B. Cheng, Dalton Trans. 40 (2011) 6635‒6644. Crossref

(33). K. Miyazawa, M. Tachibana, S. Nakamura, T. Kizuka, Y. Ochiai, Fullerene Nanowhiskers. Pan Stanford, Singapore, 2019, p. 190. Crossref

Downloads

Published

2023-07-15

How to Cite

Ko, S., & Chung, H. (2023). Preparation of C60 Fullerene Nanowhisker–CuS Nanoparticle Composites and Photocatalyst for Rhodamine B Degradation under Blue Light Emitting Diode Irradiation. Eurasian Chemico-Technological Journal, 25(2), 65–71. https://doi.org/10.18321/ectj1496

Issue

Section

Articles