Preparation of C60 Fullerene Nanowhisker–CuS Nanoparticle Composites and Photocatalyst for Rhodamine B Degradation under Blue Light Emitting Diode Irradiation
DOI:
https://doi.org/10.18321/ectj1496Keywords:
Liquid-liquid interfacial precipitation, C60 FNW-CuS nanoparticle composites, Photocatalytic degradation, Rhodamine B, Blue LED irradiationAbstract
The liquid-liquid interfacial precipitation (LLIP) approach was used to synthesize the C60 fullerene nanowhisker (FNW)–CuS nanoparticle composites utilizing a CuS nanoparticle solution, C60-saturated toluene, and isopropyl alcohol (IPA). Powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the product of C60 FNW–CuS nanoparticle composites. These were also utilized to photocatalytic degradation of rhodamine B (RhB) under blue light emitting diode (LED) irradiation at 450 nm. Also, UV–vis spectroscopy was used to confirm the photocatalytic degradation activity of RhB over the C60 FNW–CuS nanoparticle composites. The percentage of photocatalytic degradation of RhB was shown to be 95.148%. The kinetics study for photocatalytic degradation of RhB using C60 FNW–CuS nanoparticle composites followed a pseudo-first-order reaction rate law. C60 FNW–CuS nanoparticle composites as photocatalyst have a rate constant of 4.82×10-2 min-1 at 25 °C.
References
(1). M. Saranya, R. Ramachandran, E.J.J. Samuel, et al., Powder Technol. 279 (2015) 209‒220. Crossref
(2). M. Pal, N.R. Mathews, E. Sanchez-Mora, et al., J. Nanoparticle Res. 17 (2015). Crossref
(3). G.M. Neelgund, A. Oki, Mater. Res. Bull. 129 (2020) 110911. Crossref
(4). M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69‒96. Crossref
(5). X. Meng, G. Tian, Y. Chen, et al., Cryst. Eng. Comm. 15 (2013) 5144‒5149. Crossref
(6). A. Fujishima, K. Honda, Nature 238 (1972) 37‒38. Crossref
(7). A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C. 1 (2000) 1‒21. Crossref
(8). D. Chenchik, J. Jandosov, Eurasian Chem.- Technol. J. 19 (2017) 191‒195. Crossref
(9). S. Yadav, P.K. Bajpai, Nano-Struct. Nano- Objects 10 (2017) 151‒158. Crossref
(10). A. Singh, R. Manivannan, S.N. Victoria, Arab. J. Chem. 12 (2019) 2439‒2447. Crossref
(11). M. Jain, D.G. Babar, S.S. Garje, Appl. Nanosci. 9 (2019) 353‒367. Crossref
(12). D. Rohilla, N. Kaur, A. Shanavas, S. Chaudhary, Chemosphere 277 (2021) 130202. Crossref
(13). S.S.T. Selvi, J.M. Linet, S. Sagadevan, J. Exp. Nanosci. 13 (2018) 130‒143. Crossref
(14). Y. Zhai, M. Shim, Chem. Mater. 29 (2017) 2390‒2397. Crossref
(15). L. Isac, I. Popovici, A. Enesca, A. Duta, Energy Procedia 2 (2010) 71‒78. Crossref
(16). S.I. Raj, A. Jaiswal, I. Uddin, RSC Adv. 10 (2020) 14050‒14059. Crossref
(17). M. Baláž, E. Dutková, Z. Bujňáková, et al., J. Alloys Compd. 746 (2018) 576‒582. Crossref
(18). T. Wakahara, K. Miyazawa, Y. Nemoto, O. Ito, Carbon 49 (2011) 4644‒4649. Crossref
(19). K. Miyazawa, K. Hamamoto, J. Mater. Sci. Res. 17 (2002) 2205‒2208. Crossref
(20). K. Miyazawa, K. Hamamoto, S. Nagata, T. Suga, J. Mater. Sci. Res. 18 (2003) 1096‒1103. Crossref
(21). T. Wakahara, M. Sathish, K. Miyazawa, T. Sasaki, Nano 3 (2008) 351‒354. Crossref
(22). K. Miyazawa, J. Nanosci. Nanotechnol. 9 (2009) 41‒50. Crossref
(23). J.W. Ko, W.B. Ko, Mater. Trans. 57 (2016) 2122‒2126. Crossref
(24). J.W. Ko, K. Miyazawa, Y. Tanaka, W.B. Ko, Fuller. Nanotub. Carbon Nano¬structures 28 (2020) 794‒798. Crossref
(25). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 25 (2017) 710‒715. Crossref
(26). K. Miyazawa, Y. Kuwasaki, A. Obayashi, M. Kuwabara, J. Mater. Sci. Res. 17 (2002) 83‒88. Crossref
(27). F. Sica, S. Adinolfi, L. Vitagliano, et al., J. Cryst. Growth 168 (1996) 192‒197. Crossref
(28). B. Xing, C. Shi, C. Zhang, et al., J. Nanomater. 2016 (2016) 8393648. Crossref
(29). Y. Wang, F. Jiang, J. Chen, et al., J. Nanomater. 10 (2020) 178. Crossref
(30). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 27 (2019) 895‒898. Crossref
(31). J.W. Ko, W.B. Ko, Fuller. Nanotub. Carbon Nanostructures 30 (2022) 693‒698. Crossref
(32). J. Yu, T. Ma, G. Liu, B. Cheng, Dalton Trans. 40 (2011) 6635‒6644. Crossref
(33). K. Miyazawa, M. Tachibana, S. Nakamura, T. Kizuka, Y. Ochiai, Fullerene Nanowhiskers. Pan Stanford, Singapore, 2019, p. 190. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.