Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets

Authors

  • N.S. Pokryshkin National Research Nuclear University “MEPhI”, Phys-Bio Institute, Kashirskoe shosse, 31, Moscow, Russia; Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, GSP-1, Moscow, Russia
  • V.G. Yakunin Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, GSP-1, Moscow, Russia
  • A.I. Efimova Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, GSP-1, Moscow,
  • A.A. Elyseev Lomonosov Moscow State University, Faculty of Chemistry, Leninskie Gory, GSP-1, Moscow, Russia
  • D.E. Presnov D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Leninskie gory, GSP-1, Moscow, Russia
  • V.P. Savinov Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, GSP-1, Moscow, Russia
  • V.Yu. Timoshenko National Research Nuclear University “MEPhI”, Phys-Bio Institute, Kashirskoe shosse, 31, Moscow, Russia; Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, GSP-1, Moscow, Russia

DOI:

https://doi.org/10.18321/ectj1497

Keywords:

Nanowires, Nanostructures, Silicon, Cold atmospheric plasma Plasma jet, Photoluminescence, Raman scattering, Charge carriers, Fano effect

Abstract

Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.

References

(1). M.G. Kong, M. Keidar, K. Ostrikov. J. Phys. D: Appl. Phys. 44 (2011) 174018. Crossref

(2). S.Q. Xiao, S. Xu, K. Ostrikov. Mater. Sci. Eng. R Rep. 78 (2014) 1–29. Crossref

(3). Ch. Ma, A. Nikiforov, D. Hegemann, et al., Int. Mater. Rev. 68 (2022) 82–119. Crossref

(4). M. Laroussi, Front. Phys. 8 (2020) 1–7. Crossref

(5). K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62 (2013) 113–224. Crossref

(6). G.A. Gruzdev, O.V. Karpukhina, V.G. Yakunin, et al., Moscow Univ. Biol. Sci. Bull. 76 (2022) 244–248. Crossref

(7). C. Almeida-Ferreira, R. Silva-Teixeira, M. Laranjo, et al., Appl. Sci. 11 (2021) 4171. Crossref

(8). Zh. Chen, G. Garcia, V. Arumugaswami, R.E. Wirz, Phys. Fluids 32 (2020) 111702. Crossref

(9). L. Bárdos, H. Baránková, Thin Solid Films 518 (2010) 6705–6713. Crossref

(10). F. Bu, S. Feyzi, G. Nayak, et al., Innov. Food Sci. Emerg. Technol. 83 (2023) 03248. Crossref

(11). K.M. Green, M.C. Borras, P.P. Woskov, et al., IEEE Trans. Plasma Sci. 29 (2001) 399–406. Crossref

(12). H. Han, Z. Huang, W. Lee, Nano Today 9 (2014) 271–304. Crossref

(13). S.P. Rodichkina, T. Nychyporuk, A.V. Pavlikov, et al., Phys. Status Solidi A 2017 (2020) 1900670. Crossref

(14). S.P. Rodichkina, T. Nychyporuk, A.V. Pavlikov, et al., J. Raman Spectrosc. 50 (2019) 1642. Crossref

(15). K.H. Schoenbach, F.E. Peterkin, R.W. Alden, S.J. Beebe, IEEE Trans. Plasma Sci. 25 (1997) 284–292. Crossref

(16). E. Sysolyatina, A. Mukhachev, M. Yurova, et al., Plasma Process. Polym. 11.4 (2014) 315–334. Crossref

(17). V.Yu. Timoshenko, K.A. Gonchar, L.A. Golovan, et al., J. Nanoelectron. Optoelectron. 6 (2011) 519–524. Crossref

(18). U. Fano, Phys. Rev. 124.6 (1961) 1866. Crossref

(19). F. Cerdeira, T.A. Fjeldly, M. Cardona, Phys. Rev. B 8 (1973) 4734–4745. Crossref

(20). B.G. Burke, J. Chan, K.A. Williams, et al., J. Raman Spectrosc. 41.12 (2010) 1759–1764. Crossref

(21). A.I. Efimova, E.A. Lipkova, K.A. Gonchar, et al., J. Raman Spectrosc. 51 (2020) 2146–2152. Crossref

(22). M. Chandrasekhar, J.B. Renucci, M. Cardona, Phys. Rev. B 17 (1978) 1623–1633. Crossref

(23). A.N. Buzynin, A.E. Luk’yanov, V.V. Osiko, V.V. Voronkov, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 366–370. Crossref

(24). V.Y. Timoshenko, T. Dittrich, I. Sieber, et al., Phys. Status Solidi A 182 (2000) 325–330. Crossref

(25). T.R. Northen, H.-K. Woo, M.T. Northen, et al., J. Am. Soc. Mass. Spectrom. 18 (2007) 1945–1949. Crossref

Downloads

Published

2023-07-15

How to Cite

Pokryshkin, N., Yakunin, V., Efimova, A., Elyseev, A., Presnov, D., Savinov, V., & Timoshenko, V. (2023). Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets. Eurasian Chemico-Technological Journal, 25(2), 73–79. https://doi.org/10.18321/ectj1497

Issue

Section

Articles