Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets
DOI:
https://doi.org/10.18321/ectj1497Keywords:
Nanowires, Nanostructures, Silicon, Cold atmospheric plasma Plasma jet, Photoluminescence, Raman scattering, Charge carriers, Fano effectAbstract
Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.
References
(1). M.G. Kong, M. Keidar, K. Ostrikov. J. Phys. D: Appl. Phys. 44 (2011) 174018. Crossref
(2). S.Q. Xiao, S. Xu, K. Ostrikov. Mater. Sci. Eng. R Rep. 78 (2014) 1–29. Crossref
(3). Ch. Ma, A. Nikiforov, D. Hegemann, et al., Int. Mater. Rev. 68 (2022) 82–119. Crossref
(4). M. Laroussi, Front. Phys. 8 (2020) 1–7. Crossref
(5). K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62 (2013) 113–224. Crossref
(6). G.A. Gruzdev, O.V. Karpukhina, V.G. Yakunin, et al., Moscow Univ. Biol. Sci. Bull. 76 (2022) 244–248. Crossref
(7). C. Almeida-Ferreira, R. Silva-Teixeira, M. Laranjo, et al., Appl. Sci. 11 (2021) 4171. Crossref
(8). Zh. Chen, G. Garcia, V. Arumugaswami, R.E. Wirz, Phys. Fluids 32 (2020) 111702. Crossref
(9). L. Bárdos, H. Baránková, Thin Solid Films 518 (2010) 6705–6713. Crossref
(10). F. Bu, S. Feyzi, G. Nayak, et al., Innov. Food Sci. Emerg. Technol. 83 (2023) 03248. Crossref
(11). K.M. Green, M.C. Borras, P.P. Woskov, et al., IEEE Trans. Plasma Sci. 29 (2001) 399–406. Crossref
(12). H. Han, Z. Huang, W. Lee, Nano Today 9 (2014) 271–304. Crossref
(13). S.P. Rodichkina, T. Nychyporuk, A.V. Pavlikov, et al., Phys. Status Solidi A 2017 (2020) 1900670. Crossref
(14). S.P. Rodichkina, T. Nychyporuk, A.V. Pavlikov, et al., J. Raman Spectrosc. 50 (2019) 1642. Crossref
(15). K.H. Schoenbach, F.E. Peterkin, R.W. Alden, S.J. Beebe, IEEE Trans. Plasma Sci. 25 (1997) 284–292. Crossref
(16). E. Sysolyatina, A. Mukhachev, M. Yurova, et al., Plasma Process. Polym. 11.4 (2014) 315–334. Crossref
(17). V.Yu. Timoshenko, K.A. Gonchar, L.A. Golovan, et al., J. Nanoelectron. Optoelectron. 6 (2011) 519–524. Crossref
(18). U. Fano, Phys. Rev. 124.6 (1961) 1866. Crossref
(19). F. Cerdeira, T.A. Fjeldly, M. Cardona, Phys. Rev. B 8 (1973) 4734–4745. Crossref
(20). B.G. Burke, J. Chan, K.A. Williams, et al., J. Raman Spectrosc. 41.12 (2010) 1759–1764. Crossref
(21). A.I. Efimova, E.A. Lipkova, K.A. Gonchar, et al., J. Raman Spectrosc. 51 (2020) 2146–2152. Crossref
(22). M. Chandrasekhar, J.B. Renucci, M. Cardona, Phys. Rev. B 17 (1978) 1623–1633. Crossref
(23). A.N. Buzynin, A.E. Luk’yanov, V.V. Osiko, V.V. Voronkov, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 366–370. Crossref
(24). V.Y. Timoshenko, T. Dittrich, I. Sieber, et al., Phys. Status Solidi A 182 (2000) 325–330. Crossref
(25). T.R. Northen, H.-K. Woo, M.T. Northen, et al., J. Am. Soc. Mass. Spectrom. 18 (2007) 1945–1949. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.