A Facile Synthesis and Investigation of Na8[ZrErNd(MoO4)9] Complex
DOI:
https://doi.org/10.18321/ectj1501Keywords:
Molybdates of rare earth, Elements, Lanthanides, Residual concentration method, Thermal analysis, Complex dehydrationAbstract
The continuous growth of rare earth elements (REE) value and the widespread use of molybdates in medicine and various industries and technologies determine the ever-increasing interest in this type of material. In this research, the interactions in the ZrOCl2-Er2Cl3-NdCl3-Na2MoO4-H2O multicomponent system at a temperature of 20 °С were studied by the method of residual concentrations well known as Tananaev’s or so-called apparent volume method. It was shown that a chemical reaction takes place in the system under study, resulting in the formation of a complex molecule that is insoluble in water. A detailed physicochemical study (X-ray diffraction, IR spectroscopy, thermal analysis) of the formed material was carried out. For the first time, it was possible to obtain rare earth element’s molybdates in the form of Na8[ZrErNd(MoO4)9]∙3.86H2O complex material by low cost and low-temperature method.
References
(1). P. Kubasiewicz-Ross, M. Dominiak, T. Gedrange, U. Botzenhart, Adv. Clin. Exp. Med. 26 (2017) 533. Crossref
(2). L.G. Nersisyan, R.S. Harutyunyan, Russ. J. Inorg. Chem. 63 (2018) 455‒459. Crossref
(3). Q. Zhong, B. Kobe, U. Kappler, Front. Microbiol. 11 (2020) 3185. Crossref
(4). E.I. Orlova, E.P. Kharitonova, V.I. Voronkova, Crystallogr. Rep. 62 (2017) 469‒473. Crossref
(5). J.G. Bazarova, Y.L. Tushinova, B.G. Bazarov, S.G. Dorzhieva, Russ. Chem. Bull. 66 (2017) 587‒592. Crossref
(6). S.G. Dorzhieva, D.O. Sofich, B.G. Bazarov, et al., Inorg. Mater. 57 (2021) 54‒59. Crossref
(7). M.L. He, D. Ranz, W.A. Rambeck, J. Anim. Phys. Anim. Nutr. 85 (2001) 263‒270. Crossref
(8). C.H. Evans, (1996). Medical Uses of the Rare Earths. In: Evans, C.H. (eds.) Episodes from the History of the Rare Earth Elements. Chemists and Chemistry, vol 15. Springer, Dordrecht. Crossref
(9). A.P. Sobaczynski, T. Bauer, R. Kempe, Organometallics 32 (2013) 1363‒1369. Crossref
(10). L. Schlapbach, A. Züttel, Nature 414 (2001) 353‒358. Crossref
(11). T. Sakai, M. Matsuoka, C. Iwakura, Handbook on the Physics and Chemistry of Rare Earths, 21 (1995) 133‒178. Crossref
(12). X. Chen, T. Sun, F. Wang, Chem Asian J. 15 (2019) 21‒33. Crossref
(13). J.-C.G. Bünzli, Trends Chem. 1 (2019) 751‒762. Crossref
(14). Y. Wu, M.J.Y. Ang, M. Sun, et al., J. Phys. D: Appl. Phys. 52 (2019). Crossref
(15). I. Ishikawa, A. Aoki, A.A. Takasaki, J. Periodontal Res. 39 (2004) 275. Crossref
(16). I.V. Tananaev, N.V. Bausova, Chemistry of rare earth elements. Issue. 2. M.: Publishing House of the Academy of Sciences of the USSR, 1955. P. 105. (In Russian)
(17). E.N. Beresnev, O.B. Kuznetsova, V.A. Ketsko, M.A. Kop’eva, Russ. J. Inorg. Chem. 55 (2010) 1818. Crossref
(18). V.B. Glushkova, A.V. Lapshin, A.A. Vershinin, et al., Glass. Phys. Chem. 30 (2004) 558‒563. Crossref
(19). L.G. Nersisyan, R.S. Harutyunyan, Khimicheskaya Tekhnologiya 21 (2020) 10‒14.
(20). J. Zhai, E. Bakker, Analyst 141 (2016) 4252‒4261. Crossref
(21). S. Fajardo, G.S. Frankel, J. Electrochem. Soc. 162 (2015) 693. Crossref
(22). P.R.K. Mohan, G. Sreelakshmi, C.V. Mura¬leedharan, R. Joseph, Vib. Spectrosc. 62 (2012) 77‒84. Crossref
(23). L.G. Nersisyan, V.K. Vlasov, Chemical Journal of Armenia 55 (2002) 133‒135. URL
(24). Ts.T. Bazarova, A.E. Sarapulova, Bazarov B.G. Vibrational spectra of ternary molybdates of thallium, divalent metals and zirconium. Vestn. Buryat. gos. un-ta. 3 (2011) 3‒7 (in Russian).
(25). A. Davantès, G. Lefèvre, J. Phys. Chem. 117 (2013) 12922. Crossref