Study of the Mechanical Properties of Gelatin Films with Natural Compounds of Tamarix hispida

Authors

  • Sh.N. Zhumagaliyeva al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • G.G. Abdikarim al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A.B. Berikova al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • Zh.A. Abilov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • J. Koetz University of Potsdam, Am Neuen Palais 10, House 9, 14469 Potsdam, Germany
  • M.T. Kopbayeva Asfendiyarov Kazakh National Medical University, 94, Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1519

Keywords:

gelatin , Tamarix hispida (TH-10), Gelatin – TH-10 films deformation , tensile strength

Abstract

In this work, an extract of the Tamarix hispida (TH-10) was prepared in 10 vol.% water-ethanol solution. Based on the properties of antioxidant, and anti-inflammatory activity, various gelatin films containing (10–15 wt.%) gelatin were obtained. The fabricated gelatin films containing TH-10 extract were used as wound dressings for burns. Their deformation properties, physical and mechanical properties, and SEM micrographs were defined. An additional film structure was determined by using a Fourier transform infrared spectrometer (FT-IR). The strength of polymer films containing TH-10 depends on gelatin content. This indicates that the gelatin film binds the TH-10 with the help of hydrophobic interactions. It was found that the higher amount of gelatin leads to lower tear resistance of films. This is due to the formation of micro-cracks on the surface of films leading to their easy rupture. During the study of tensile strength, it was proven that the optimal amount of glycerin in the film is 5 vol.%. The polymer film containing 12 wt.% gelatin and 1 wt.% TH-10 was recognized as the most effective composition in terms of strength and elasticity properties for application as wound dressing materials.

References

(1). R. Yu, H. Zhang, B. Guo, Nano-Micro Lett. 14 (2022) 1–12. Crossref

(2). V. Gopinath, S.M. Kamath, S. Priyadarshini, Z. Chik, A.A. Alarfaj, A.H. Hirad, Biomed. Pharmacother. 146 (2022) 492–502. Crossref

(3). E. Bryuzgina, V. Yartseva, E. Bryuzgin, O. Tuzhikov, A. Navrotskiy, Polym. Bull. 80 (2023) 739–756. Crossref

(4). S. Schonwalder, F. Bally, L. Heinke, C. Azucena, et al., Biomacromolecules 15 (2014) 2398–2406. Crossref

(5). M. Murariu, P. Dubois, Adv. Drug Deliv. Rev. 107 (2016) 17–46. Crossref

(6). B. Stubbe, A. Mignon, L. Van Damme, K. Claes, et al., Macromol. Biosci. 21 (2021). Crossref

(7). R. Gharibi, A. Shaker, A. Rezapour-Lactoee, S. Agarwal, ACS Biomater. Sci. Eng. 8 (2021) 3633– 3647. Crossref

(8). I. Lukin, I. Erezuma, L. Maeso, J. Zarate, et al., Pharmaceutics 14 (2022) 1177. Crossref

(9). Z. Zeng, G. Jiang, Y. Sun, U. Aharodnikau, et al., Biomat. Sci. 18 (2022) 5326–5339. Crossref

(10). Y. Huang, L. Bai, Y. Yang, Z. Yin, B. Guo, J. Colloid Interface Sci. 608 (2022) 2278–2289. Crossref

(11). M.C. Echave, R. Hernaz, L. Iturriaga, et al., Expert Opin. Biol. Ther. 8 (2019) 773–779. Crossref

(12). M.C. Echave, P. Sanchez, J.L. Pedraz, G. Orive, J. Drug Deliv. Sci. Technol. 42 (2017) 63–74. Crossref

(13). P. Hubner, N. Donati, L.K. Quines, M. Tessaro, et al., Mater. Sci. Eng. 107 (2020) 110215. Crossref

(14). K. Bozorov, Y.-R. Ma, J.Y. Zhao, H.-Q. Zhao, et al., Eur. J. Med. Chem. 84 (2014) 739–745. Crossref

(15). N.А. Sultanova, Zh.А. Abilov, А.K. Umbetova, M.I. Choudhary, Eurasian Chem.-Technol. J. 3 (2013) 219–226. Crossref

(16). S.N. Zhumagaliyeva, A. Amanzholkyzy, N.A. Sultanova, Z.A. Abilov, Chem. Plant Raw Mater. 3 (2021) 283–289. Crossref

(17). Y. Iskhanov, J. Appl. Eng. Sci. 16 (2018) 233–241. Crossref

(18). Y.S. Ikhsanov, Z.A. Abilov, N.A. Sultanova, M.I. Choudhary, The Journal ChemChemTech [Izvestiya vysshikh uchebnykh zavedeniy khimiya khimicheskaya tekhnologiya]. 6 (2018) 83–87. (In Russ.) Crossref

(19). A.M. Sampıev, E.B. Nıkıforova, M.V. Gamagına, Medical & Pharmaceutical Journal “Pulse” 22 (2020) 80–85. Crossref

(20). I. Leceta, C. Alcalde, M. Urdanpilleta, et al., Comp. Chem. Eng. 153 (2021) 107410. Crossref

(21). Z. Wu, S.H. Korntner, J. Olijve, A.M. Mullen, D.I. Zeugolis, Biomolecules 11 (2021) 1003–1016. Crossref

(22). O.N. Dabizha, M.S. Bityutskaya, Sorbtsionnye i Khromatograficheskie Protsessy 5 (2020) 632–640. Crossref

(23). O.V. Kuzovlev, N.E. Proskuryakova, Izvestiya TulGU 2 (2015) 78–82.

(24). P. Jantrawut, J. Bunrueangtha, J. Suerthong, N. Kantrong, Materials 10 (2019) 1628–1638. Crossref

(25). S. Bhowmik, J. Islam, T. Debnath, et al., Polymers 12 (2017) 222–234. Crossref

Downloads

Published

2023-11-20

How to Cite

Zhumagaliyeva, S., Abdikarim, G., Berikova, A., Abilov, Z., Koetz, J., & Kopbayeva, M. (2023). Study of the Mechanical Properties of Gelatin Films with Natural Compounds of Tamarix hispida . Eurasian Chemico-Technological Journal, 25(3), 165–171. https://doi.org/10.18321/ectj1519

Issue

Section

Articles