Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide

Authors

  • V.V. Pavlenko al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • K.M. Temirkulova al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A.Yu. Zakharov Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • Y.A. Aubakirov al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Zh.E. Ayaganov al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1542

Keywords:

hybrid capacitor, porous structure, mass balancing, redox electrolyte, potassium bromide

Abstract

This work investigates the electrochemical behavior of hybrid supercapacitors with carbon-based electrodes of different porosity using 5M NaNO3 + 0.5M KBr electrolyte to optimize energy storage processes. Three types of carbon materials were synthesized: activated carbon from rice husk (RH) with a specific surface area of ~2300 m2/g and pore size < 1 nm, and templated carbons from magnesium citrate (MP-8) and glucose with SiO2 as a template (G7), having surface areas of 1976 and 1320 m2/g and pore sizes of 3.4 and 7 nm, respectively. The microporous structure of activated carbon (AC) obtained from RH shows limitations in the diffusion of electrolyte ions, which affects the charge-discharge kinetics. In contrast, the larger mesoporous structures of templated carbons promoted better adsorption and ion transport, significantly affecting the dynamics of redox reactions. The RH/MP-8 hybrid capacitor, combining high surface area and large pore size, demonstrated a 54% increase in specific capacitance, 128% increase in specific energy and 51% increase in energy efficiency at high current densities of 5 A/g, comparing to the symmetric RH/RH hybrid capacitor. This study highlights the critical importance of the relationship between electrode pore structure and electrolyte composition for optimizing supercapacitor performance, which provides valuable information for the development of efficient energy storage technologies.

References

(1). A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sust. Energ. Rev. 101 (2019) 123–145. Crossref

(2). D.P. Chatterjee, A.K. Nandi, J. Mater. Chem. A 9 (2021) 15880–15918. Crossref

(3). L. Kouchachvili, W. Yaïci, E. Entchev, J. Power Sources 374 (2018) 237–248. Crossref

(4). M.B. Camara, H. Gualous, F. Gustin, A. Berthon, IEEE Trans. Veh. Technol. 57 (2008) 2721–2735. Crossref

(5). C. Abbey, G. Joos, IEEE Trans. Ind. Applicat. 43 (2007) 769–776. Crossref

(6). A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem, Energy 248 (2022) 123617. Crossref

(7). B.E. Conway, Electrochemical Supercapacitors, Springer US, Boston, MA, 1999. Crossref

(8). P. Simon, Y. Gogotsi, Nat. Mater 7 (2008) 845– 854. Crossref

(9). D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Chem. Soc. Rev. 44 (2015) 1777–1790. Crossref

(10). A. Mendhe, H.S. Panda, Discov. Mater. 3 (2023) 29. Crossref

(11). S. Dong, E.C. La Plante, X. Chen, M. Torabzadegan, et al., Npj Mater. Degrad. 2 (2018) 32. Crossref

(12). M. Zhong, M. Zhang, X. Li, Carbon Energy 4 (2022) 950–985. Crossref

(13). C. Xiong, Y. Zhang, Y. Ni, J. Power Sources 560 (2023) 232698. Crossref

(14). Z. Zhai, L. Zhang, T. Du, B. Ren, et al., Mater. Des. 221 (2022) 111017. Crossref

(15). F. Cheng, X. Yang, S. Zhang, W. Lu, J. Power Sources 450 (2020) 227678. Crossref

(16). A.P. Silva, A. Argondizo, P.T. Juchen, L.A.M. Ruotolo, Sep. Purif. Technol. 271 (2021) 118872. Crossref

(17). V. Pavlenko, S. Kalybekkyzy, D. Knez, Q. Abbas, et al., Ionics 28 (2022) 893–901. Crossref

(18). Zh. Supiyeva, Kh. Avchukir, V. Pavlenko, M. Yeleuov, et al., Mater. Today: Proc. 25 (2020) 33– 38. Crossref

(19). F. Béguin, V. Pavlenko, P. Przygocki, M. Pawlyta, P. Ratajczak, Carbon 169 (2020) 501–511. Crossref

(20). Z. Ayaganov, V. Pavlenko, S.F.B. Haque, A. Tanybayeva, et al., J. Energy Storage 78 (2024) 110035. Crossref

(21). Y. Shao, M.F. El-Kady, J. Sun, Y. Li, et al., Chem. Rev. 118 (2018) 9233–9280. Crossref

(22). R. Guo, C. Lv, W. Xu, J. Sun, et al., Adv. Energy Mater. 10 (2020) 1903652. Crossref

(23). Y. Yerlanuly, R. Zhumadilov, R. Nemkayeva, B. Uzakbaiuly, et al., Sci. Rep. 11 (2021) 19287. Crossref

(24). X. Tang, Y.H. Lui, B. Chen, S. Hu, J. Power Sources 352 (2017) 118–126. Crossref

(25). W. Yang, Q. Han, W. Li, M. Wu, et al., Chem. Eng. J. 448 (2022) 137731. Crossref

Downloads

Published

2024-02-15

How to Cite

Pavlenko, V., Temirkulova, K., Zakharov, A., Aubakirov, Y., & Ayaganov, Z. (2024). Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide . Eurasian Chemico-Technological Journal, 25(4), 201–210. https://doi.org/10.18321/ectj1542

Issue

Section

Articles