Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings

Authors

  • E.A. Dmitriyeva Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • I.A. Lebedev Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • E.A. Bondar Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • A.I. Fedosimova Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., Almaty, Kazakhstan
  • S.A. Ibraimova Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • B.M. Nurbaev Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • A.S. Serikkanov Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan
  • B.A. Baytimbetova Satbayev University, Institute of Physics and Technology, 22a Satbayev str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1543

Keywords:

tin dioxide, electrical properties, optical properties, annealing, transmission spectra, surface, dendritic structures

Abstract

This study investigates the effects of annealing time on the optical and electrical properties of tin dioxide coatings, specifically surface resistivity and specific conductivity. The thickness of the film, as well as its density and void density, were calculated from the interference peaks. The results suggest that as the duration of annealing increases, the density of the film decreases and the void volume increases. The lack of interference peaks in the transmission spectra of films containing additives is caused by the development of dendritic structures within the films. As the annealing duration is extended to 6 h, the surface resistivity increases, resulting in a decrease in the specific conductivity of all films. As the duration of annealing increases, the surface resistivity of the films studied increases and therefore their overall quality decreases.

References

(1). D.O. Murzalinov, A.A. Shaikenova, A.G. Umirzakov, A.I. Fedosimova, et al., J. Phys.: Conf. Ser. 2155 (2022) 012008. Crossref

(2). J.Y. Huang, G.S. Huang, Z. Zhao, C. Wang, et al., J. Phys.: Condens. Matter 35 (2023) 093001. Crossref

(3). T.M.W.J. Bandara, A.A.A.P. Aththanayake, G.R.A. Kumara, P. Samarasekara, et al., MRS Advances 6 (2021) 417‒421. Crossref

(4). N.M. Tompakova, A.A. Polisan, Russ. Micro¬electron. 50 (2020) 679‒687. Crossref

(5). G. Domènech-Gil, J. Samà, C. Fàbrega, I. Gràcia, et al., Sens. Actuators B: Chem. 383 (2023) 133545. Crossref

(6). E.A. Grushevskaya, S.A. Ibraimova, E.A. Dmitriyeva, I.A. Lebedev, et al., Eurasian Chem.-Technol. J. 21 (2019) 13–17. Crossref

(7). A.S. Altowyan, M. Shaban, K. Abdelkarem, A.M. El Sayed, Materials 15 (2022) 6534. Crossref

(8). S. Kahng, J.H. Kim, Chemosphere 291 (2022) 132800. Crossref

(9). J. Zhu, J. Han, W. Yu, N. Geng, et al., Int. J. Electrochem. Sci. 17 (2022) 221054. Crossref

(10). J.K. Malav, R. Rathod, S. Umare, A. Patil, S. Ghugal, Mater. Res. Express 6 (2019) 065306. Crossref

(11). S. Abirami, G. Viruthagiri, K. Ashokkumar, Mater. Today: Proc. 73 (2023) 535‒538. Crossref

(12). T. Amutha, M. Rameshbabu, M. Razia, Marwah Bakri, et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 287 (2023) 121996. Crossref

(13). S.S. Rasouli, P. Najafisayar, R. Hessam, J. Electron. Mater. 52 (2023) 896‒906. Crossref

(14). Y. Xin, S. Pan, X. Hu, C. Miao, et al., J. Colloid Interface Sci. 639 (2023) 133‒144. Crossref

(15). A.J. Haider, A.J. Mohammed, S.S. Shaker, K.Z. Yahya, M.J. Haider, Energy Procedia 119 (2017) 473-481. Crossref

(16). S. Chatterjee, A.K. Pandey, “Plasmonic Sensor Utilizing Oxide and Antemonene Heterojunction for Glucose Sensing,” 2022 Workshop on Recent Advances in Photonics, Mumbai, India, 2022, pp. 1‒2. Crossref

(17). D.M. Mukhamedshina, A.I. Fedosimova, E.A. Dmitriyeva, I.A. Lebedev, et al., Eurasian Chem.- Technol. J. 21 (2019) 57–61. Crossref

(18). A.F. Gouveia, C.M. Aldao, M.A. Ponce, E.R. Leite, E. Longo, J. Andrés, Appl. Surf. Sci. 622 (2023) 156904. Crossref

(19). C.M. Sufyana, F.T. Akbar, W. Srigutomo, Geotherm. Energy 11 (2023). Crossref

(20). H. Liang, F. You, Nat. Commun. 14 (2023) 1274. Crossref

(21). S. Estévez, R. Rebolledo-Leiva, D. Hernández, S. González-García, et al., Energy 274 (2023) 127319. Crossref

(22). J. Zoucha, C. Crespo, H. Wolf, M. Aboy, Recent Pat. Eng. 17 (2023) 3‒15. Crossref

(23). Zhong yuan You, X. Wang, F. Lu, S. Wang, et al., Nano Energy 109 (2023) 108302. Crossref

(24). S. Usha, M.S. Abishake, G. Anbezhil, S. Dhanasekar, Mater. Today: Proc. 72 (2023) 3075‒3080. Crossref

(25). B. Ghaleb, S.S. Abbasi, M. Asif, Energy Rep. 9 (2023) 3932‒3942. Crossref

(26). T. Nie, Z. Fang, X. Ren, Y. Duan, S. Liu, Nano-Micro Lett. 15 (2023) 70. Crossref

(27). J. Kaiprath, V.V. Kishor Kumar, Int. J. Air-Cond. Ref. 31 (2023) 6. Crossref

(28). A. Melliti, Optik 281 (2023) 170837. Crossref

(29). M. Raja Nayak, B. Balaji, V. Charitha Sri, S. Pavan Kalyan, AIP Conf. Proc. 2452 (2022) 090006. Crossref

(30). A.M. El-Mahalawy, F.M. Amin, A.R. Wassel, M. Abd El Salam, J. Alloys Compd. 923 (2022) 166484. Crossref

(31). El M. Bouabdalli, M. El Jouad, T. Garmim, A. Louardi, et al., Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 286 (2022) 116044. Crossref

(32). E.A. Dmitriyeva, E.A. Grushevskaya, D.M. Mukhamedshina, K.A. Mit, I.A. Lebedev, Rеc. Cоntr. Phys. 72 (2020) 81–88. Crossref (in Russ.)

(33). Ruohong Sui, Paul A. Charpentier, Robert A. Marriott, Nanomaterials 11 (2021) 1686. Crossref

(34). M. Zasadzinska, T. Knych, B. Smyrak, P. Strzepek, Materials 13 (2020) 5513. Crossref

(35). R.I. Kraydenko, Fluoroammonium separation of multicomponent silicate systems into individual oxides 05.17.02. – Technology of rare, scattered and radioactive elements. Abstract of the dissertation for the degree of candidate of chemical sciences. Tomsk, 2008, p. 2. (in Russ.)

(36). А.A. Smоrokov, А.S. Kаntaev, V.А. Bоrisov, AIР Cоnf. Prоc. 2143 (2019) 020022. Crossref

(37). A. Tarighi, A. Mashreghi, J. Electron. Mater. 48 (2019) 7827–7835. Crossref

(38). H. Miranda, S. Velumani, C.A. Samudio Pérez, J.C. Krause, et al., J. Mater. Sci.: Mater. Electron. 30 (2019) 15563–15581. Crossref

Downloads

Published

2024-02-15

How to Cite

Dmitriyeva, E., Lebedev, I., Bondar, E., Fedosimova, A., Ibraimova, S., Nurbaev, B., … Baytimbetova, B. (2024). Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings . Eurasian Chemico-Technological Journal, 25(4), 211–217. https://doi.org/10.18321/ectj1543

Issue

Section

Articles

Most read articles by the same author(s)