Changes in the Physicochemical Characteristics of Humic Acids in a Hydrodynamic Rotor-Pulsation Apparatus
DOI:
https://doi.org/10.18321/ectj1544Keywords:
humic acids, carbon-humic fertilizers, hydrodynamic rotary- pulsation apparatusAbstract
The work presents research results of the change comparison of brown coals and the study of the physicochemical properties of humic substances obtained from brown coals of the Karazhyra, Ekibastuz, and Kyzyl-Kiya deposits after hydrodynamic treatment in a rotary-pulsation apparatus. It is shown that the hydromechanical effect on humic acids leads to a change in their composition, accompanied by a decrease in the degree of aromaticity and an increase in the content of oxygen-containing fragments. Mechanical treatment of brown coals under oxidizing conditions maximizes the efficiency of extraction of water-soluble components and humic acids. The structural parameters and functional composition of humic acid molecules during the treatment of brown coals under oxidation-reduction conditions change depending on the conditions. The elemental and functional composition (using IR spectroscopy and potentiometry) of humic substances in brown coals and their molecular weight distribution using size-exclusion chromatography were studied. The influence of the content of metal-binding centers, dispersity, and ash content of humic substances was studied before and after treatment. At a temperature of 70 ºC a rotation time of 10 s, 98.7% of humic acids passes into the solution, which is the best indicator.
References
(1). Author’s certificate 483142 USSR. Class B 03 d 1/14. Rotary apparatus. A.A. Bershitsky, S.P. Tulchinsky. – B.I., 1975, No. 33.
(2). B.T. Omarov, Sh.M. Moldabekov, K.T. Zhantasov, Zh.M. Altybayev, et al. Influence of coal humic fertilizers on development of agriculture. Reports of the National Academy of Sciences of the Republic of Kazakhstan 2 (2016) 96–99. URL
(3). T.Zh. Umarov, O.I. Pobedonostseva, N.I. Pobe¬donostseva. Intensification of the process of coal oxidation under the influence of hydrodynamic forces. Solid Fuel Chemistry [Himija tverdogo top¬liva] 4 (1981) 42–46. (in Russ.)
(4). I.I. Lishtvan, Yu.G. Yanuta, A.M. Abramets, V.P. Strigutskii, Yu.Yu. Navosha, Solid Fuel Chem. 47 (2013) 147–152. Crossref
(5). J. Dugarjav, B. Avid, S. Zherebtsov. Study of humic acids and preparations based on them. Book of Abstracts Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems». October 19-23, 2019. Crossref
(6). S.I. Zherebtsov, K.S. Votolin, N.V. Malyshenko, O.V. Smotrina, et al., Solid Fuel Chem. 53 (2019) 253–261. Crossref
(7). V.A. Kholodov, N.V. Yaroslavtseva, A.I. Konstantinov, I.V. Perminova, Eurasian Soil Sci. 48 (2015) 1101–1109. Crossref
(8). O.V. Rybachuk, M.P. Sartakov, V.A. Chumak, Electronic absorption spectra of hematomelanic and humic acids of peats of the Khanty-Mansiysk Autonomous District. Eurasian Union of Scientists [Evrazijskij Sojuz Uchenyh (ESU)] 7 (2014) 146– 147. (in Russ.)
(9). B.T. Yermagambet, B.K. Kasenov, M.K. Kazankapova, Zh.M. Kassenova, et al., Solid Fuel Chem. 55 (2021) 41–46. Crossref
(10). M.M. Gertsen, E.D. Dmitrieva, O.S. Yanichkina, S.V. Ivanov. Directed chemical novolac-type modification of humic acids of peats. Bulletin of Tver State University. Series: Chemistry 4 (2019) 156–164. (in Russ.) URL
(11). E.V. Maltseva, A.V. Savel’eva, A.A. Ivanov, N.V. Yudina, O.I. Lomovski, Russ. J. Appl. Chem. 87 (2014) 1070–1076. Crossref
(12). U Nazarbek, S Nazarbekova, Y Raiymbekov, M Kambatyrov, P. Abdurazova, e-Polymers 23 (2023). Crossref
(13). U. Nazarbek, P. Abdurazova, S. Nazarbekova, D. Assylbekova, et al., Appl. Sci. 12 (2022) 3658. Crossref
(14). S.N. Chukov. The concept of evolutionary humification. Book of Abstracts Seventh International Conference on Humic Innovative Technologies “Humic substances and technologies for resilience”, November 18-21, 2022. Crossref
(15). M.U. Isokov, R.S. Alimov, I.M. Almatov, S.A. Soatov, Obogashchenie Rud 5 (2022). Crossref
(16). H.R. Schulten. Chapter 3. Models of Humic Structures: Association of Humic Acids and Organic Matter in Soils and Water. In.: Humic Substances and Chemical Contaminants, 2001. Crossref
(17). J. Smilek, P. Sedláček, M. Kalina. The interactions of organic species with humic acids studied by dialysis techniques. Comparison of selectively methylated with “natural” humic acids. Book of Abstracts Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems». October 19-23, 2019. Crossref
(18). R. Baigorri, J. Erro, Ó. Urrutia, J.M. Martinez, M. Mandado, M. Martín-Pastor, et al., RSC Adv. 9 (2019) 25790‒25796. Crossref
(19). K.T. Arynov, A.P. Auyeshov, M.F. Faskhutdinov, O.T. Zhilkibayev. Increase of efficiency of liquid humic fertilizers based on the use of combined feedstock. Book of Abstracts Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems», October 19-23, 2019. Crossref
(20). E. Tombácz, J.A. Rice. CHANGES OF COLLOIDAL STATE IN AQUEOUS SYSTEMS OF HUMIC ACIDS. Understanding Humic Substances. 1999, p. 69– 78. Crossref
(21). N.U. Mulloev, N.A. Lutfiloev, S. Odinaev, M.I. Dergacheva, N.L. Lavrik. Comparative analysis of the spectral characteristics of humic acids of various genesis. Proceedings of the Academy of Sciences of the Republic of Tajikistan 63 (2020) 78–84 (in Russ.) URL
(22). A.V. Savel’eva, N.V. Yudina, E.M. Berezina, E.V. Petrova, Solid Fuel Chem. 50 (2016) 76–80. Crossref
(23). V.D. Tikhova, T.F. Bogdanova, V.P. Fadeeva, V.N. Piottukh-Peletsky, J. Anal. Chem. 68 (2013) 86– 94. Crossref
(24). K.S. Votolin, S.I. Zherebtsov, O.V. Smotrina, Z.R. Ismagilov, Chemistry for Sustainable Development 6 (2019) 576–583. Crossref
(25). A.V. Savel’eva, A.A. Ivanov, N.V. Yudina, O.I. Lomovsky, Dzh. Dugarzhav, Russ. J. Appl. Chem. 86 (2013) 552–557. Crossref
(26). N.V. Yudina, A.V. Savel’eva, E.V. Linkevich, Solid Fuel Chem. 53 (2019) 29–35. Crossref
(27). I.M. Nikitina, S.A. Epshtein, N.A. Fomenko, E.L. Kossovich, Eurasian Mining 2 (2016) 33–36. URL
(28). A.V. Savel’eva, N.V. Yudina, Solid Fuel Chem. 48 (2014) 328–331. Crossref
(29). M.B. Amangulyev, The main quantities characterizing the chemical activity of humic acids. Symbol of Science: International Scientific Journal 9-1 (2023) 11–12.
(30). V.A. Avramenko, S.Yu. Bratskaya, A.S. Yakushevich, A.V. Voit, et al. Geochem. Int. 50 (2012) 437–446. Crossref
(31). T.S. Skripkina, L.I. Yudina, V.D. Tikhova, A.L. Bychkov, I.O. Lomovsky, Solid Fuel Chem. 57 (2023) 402–410. Crossref
(32). A.V. Savel’eva, A.A. Ivanov, N.V. Yudina, O.I. Lomovskii, Solid Fuel Chem. 49 (2015) 201–205. Crossref
(33). A.G. Proidakov, Solid Fuel Chem. 43 (2009) 9–14. Crossref
(34). I.I. Lishtvan, V.P. Strigutskii, Yu.G. Yanuta, A.M Abramets, et al., Solid Fuel Chem. 46 (2012) 153– 158. Crossref
(35). T.S. Urazova, A.L. Bychkov, O.I. Lomovskii, Russ. J. Appl. Chem. 87 (2014) 651–655. Crossref
(36). R.P. Koroleva, Sh.Zh. Zhorobekova, E.D. Kasymova, K.A. Kydralieva. Donor-acceptor properties of humic acids. News of the National Academy of Sciences of the Kyrgyz Republic 2 (2013) 36–41.
(37). M.A. Promtov, A.Yu. Stepanov, Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 27 (2021) 263–274. (in Russ.) Crossref
(38). T. Skripkina, A. Ulihin, A. Bychkov, S. Mamylov, et al., RSC Adv. 10 (2020) 21108–21114. Crossref
(39). S.L. Khil’ko, I.V. Efimova, O.V. Smirnova, Solid Fuel Chem. 45 (2011) 367–371. Crossref
(40). G.D. Chimitdorzhieva, D.B. Andreeva, V.M. Korsunov, Dokl. Biochem. Biophys. 384 (2002) 189–192. Crossref
(41). I.I. Lishtvan, V.P. Strigutskii, Yu.G. Yanuta, A.M. Abramets, et al., Solid Fuel Chem. 51 (2017) 301– 307. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.