Obtaining Edible Pullulan-based Films with Antimicrobial Properties
DOI:
https://doi.org/10.18321/ectj1547Abstract
A nutrient medium was selected for the efficient production of exopolysaccharide (EPS) by A. pullulans C7 strain. The production of pullulan polysaccharide was evaluated on nutrient media with traditional carbon sources and cheap substrates that were plant wastes. For maximum EPS accumulation, we proposed an optimized Czapek-Dox medium with glucose as a carbon source, sodium nitrate as a nitrogen source, and C/N=232:1 ratio (EPS yield 12.79±0.64 g/l). Medium with grape pomace 5% (EPS yield was 15.08±0.34 g/l) and medium with topinambour tuber hydrolysate 5% (EPS yield was 14.44±0.21 g/l) was proposed as a cheap substrate. Edible films with antimicrobial activity were obtained on the basis of the isolated polysaccharide. The antibacterial activity of films against Escherichia coli 603 and Staphylococcus aureus ST228 was shown when essential oils of rosemary (zones of growth inhibition from 8.41±0.71 to 9.98±0.32 mm) and oregano (zones of growth inhibition from 8.09±0.51 to 9.54±0.24 mm) were added to pullulan. The addition of xanthan gum and glycerol to the films increased their strength and elasticity. The infrared spectrum of the pullulan film showed absorption bands characteristic of polysaccharide structures.
References
(1). S. Sharma, S. Barkauskaite, A.K. Jaiswal, S. Jaiswal, Food Chem. 343 (2021) 128403. Crossref
(2). H. Ahari, S.P. Soufiani, Front. Microbiol. 12 (2021) 657233. Crossref
(3). J. Long, W. Zhang, M. Zhao, C.Q. Ruan, Carbohydr. Polym. 321 (2023) 121267. Crossref
(4). C. Bourlieu-Lacanal, V. Guillard, B. Vallès-Pàmies, N. Gontard. Edible moisture barriers: materials, shaping techniques and promises in food product stabilization. Food Materials Science: Principles and Practice, Editions Springer, 616 p., 2007, Food Engineering Series, 978-0387719467.
(5). F. Zhu, Food Chem. 359 (2021) 129871. Crossref
(6). A. Laws, Biotechnol. Adv. 19 (2001) 597‒625. Crossref
(7). N. Haghighatpanah, H. Mirzaee, F. Khodaiyan, J.F. Kennedy, Int. J. Biol. Macromol. 152 (2020) 305‒313. Crossref
(8). R.S. Singh, N. Kaur, M. Hassan, J.F. Kennedy, Int. J. Biol. Macromol. 166 (2021) 694‒706. Crossref
(9). C. Israilides, A. Smith, B. Scanlon, C. Barnett, Biotechnol. Genet. Eng. Rev. 16 (1999) 309‒324. Crossref
(10). C. Barnett, A. Smith, B. Scanlon, C.J. Israilides, Carbohydr. Polym. 38 (1999) 203‒209. Crossref
(11). P. Oğuzhan, F. Yangılar, Pullulan: Production and usage in food industry. African Journal of Food Science and Technology 4 (2013) 57‒63.
(12). Y.V. Brazhnikova, T.D. Mukasheva, L.V. Ignatova. Shtamm Drojjepodobnogo Griba Aureobasidium pullulans C7‒Producent Ekzopolisaharida i Indoliluksusnoi Kisloti [Strain of Yeast-like Fungus Aureobasidium pullulans C7‒PRODUCER of Exopolysaccharide and Indolylacetic Acid] No. 32992. RK Patent. 2018, August 6.
(13). Y. Goksungur, P. Uzunogullari, S. Dagbagli, Carbohydr. Polym. 83 (2011) 1330‒1337. Crossref
(14). A.A. Al-Hassan, M.H. Norziah, Food Hydrocoll. 26 (2012) 108‒117. Crossref
(15). B. Ghanbarzadeh, H. Almasi, A.A. Entezami, Innov. Food Sci. Emerg. Technol. 11 (2010) 697‒702. Crossref
(16). K.R. Sugumaran, E. Gowthami, B. Swathi, S. Elakkiya, et al., Carbohydr. Polym. 92 (2013) 697‒703. Crossref
(17). R.S. Singh, N. Kaur, J.F. Kennedy, Carbohydr. Polym. 217 (2019) 46‒57. Crossref
(18). S. Tokumasu, K. Tubaki, L. Manoch. 1997. Micro¬fungal communities on decaying pine needles in Thailand. pp. 93–106. In K.K. Janardhanan, K.R. Natarajan and D.L. Hawksworth, eds. Tropical My¬cology. Science Publishers Inc, USA.
(19). I. Babjeva, I. Reshetova. Yeast Resources in Natural Habitats at Polar Circle Latitude. Food Technol Biotech. 36 (1998) 1–5.
(20). L. Zhang, W. Liu, J. Ji, L. Deng, et al., Front. Bioeng. Biotechnol. 8 (2021). Crossref
(21). X. Kourilova, I. Pernicova, M. Vidlakova, R. Krejcirik, et al., Bioengineering 8 (2021) 141. Crossref
(22). N. Laohakunjit, A. Noomhorm, Starch - Stärke 56 (2004) 348‒356. Crossref
(23). M.A. Rojas-Graü, R.J. Avena-Bustillos, M. Friedman, P.R. Henika, et al., J. Agric. Food Chem. 54 (2006) 9262‒9267. Crossref
(24). M. Gniewosz, A. Synowiec, Flavour Fragr. J. 26 (2011) 389‒395. Crossref
(25). R. Gnanasambandam, N.S. Hettiarachchy, M. Coleman, J. Food Sci. 62 (1997) 395‒398. Crossref
(26). Y. Pranoto, V.M. Salokhe, S.K. Rakshit, Food Res. Int. 38 (2005) 267‒227. Crossref
(27). T.A. Savitskaya, Edible polymeric films and coatings: history and current status (a review). Polymer materials and technologies 2 (2016) 6–36.
(28). M. Oussalah, S. Caillet, S. Salmieri, L. Saucier, M. Lacroix, J. Food Prot. 69 (2006) 2364‒2369. Crossref
(29). Y. Zhao, Z. Zhang, Y. Ning, P. Miao, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 293 (2023) 122510. Crossref
(30). M. Maizura, A. Fazilah, M.H. Norziah, A.A. Karim, J. Food Sci. 72 (2007) C324‒C330. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.