Obtaining Edible Pullulan-based Films with Antimicrobial Properties

Authors

  • L.V. Ignatova Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty, Kazakhstan; Scientific Research Institute of Biology and Biotechnology Problems, 71, Al-Farabi Ave., Almaty, Kazakhstan
  • Z.K. Urazova Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty, Kazakhstan
  • Y.V. Brazhnikova Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty, Kazakhstan; Scientific Research Institute of Biology and Biotechnology Problems, 71, Al-Farabi Ave., Almaty, Kazakhstan
  • N.V. Vedyashkina Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1547

Abstract

A nutrient medium was selected for the efficient production of exopolysaccharide (EPS) by A. pullulans C7 strain. The production of pullulan polysaccharide was evaluated on nutrient media with traditional carbon sources and cheap substrates that were plant wastes. For maximum EPS accumulation, we proposed an optimized Czapek-Dox medium with glucose as a carbon source, sodium nitrate as a nitrogen source, and C/N=232:1 ratio (EPS yield 12.79±0.64 g/l). Medium with grape pomace 5% (EPS yield was 15.08±0.34 g/l) and medium with topinambour tuber hydrolysate 5% (EPS yield was 14.44±0.21 g/l) was proposed as a cheap substrate. Edible films with antimicrobial activity were obtained on the basis of the isolated polysaccharide. The antibacterial activity of films against Escherichia coli 603 and Staphylococcus aureus ST228 was shown when essential oils of rosemary (zones of growth inhibition from 8.41±0.71 to 9.98±0.32 mm) and oregano (zones of growth inhibition from 8.09±0.51 to 9.54±0.24 mm) were added to pullulan. The addition of xanthan gum and glycerol to the films increased their strength and elasticity. The infrared spectrum of the pullulan film showed absorption bands characteristic of polysaccharide structures.

References

(1). S. Sharma, S. Barkauskaite, A.K. Jaiswal, S. Jaiswal, Food Chem. 343 (2021) 128403. Crossref

(2). H. Ahari, S.P. Soufiani, Front. Microbiol. 12 (2021) 657233. Crossref

(3). J. Long, W. Zhang, M. Zhao, C.Q. Ruan, Carbohydr. Polym. 321 (2023) 121267. Crossref

(4). C. Bourlieu-Lacanal, V. Guillard, B. Vallès-Pàmies, N. Gontard. Edible moisture barriers: materials, shaping techniques and promises in food product stabilization. Food Materials Science: Principles and Practice, Editions Springer, 616 p., 2007, Food Engineering Series, 978-0387719467.

(5). F. Zhu, Food Chem. 359 (2021) 129871. Crossref

(6). A. Laws, Biotechnol. Adv. 19 (2001) 597‒625. Crossref

(7). N. Haghighatpanah, H. Mirzaee, F. Khodaiyan, J.F. Kennedy, Int. J. Biol. Macromol. 152 (2020) 305‒313. Crossref

(8). R.S. Singh, N. Kaur, M. Hassan, J.F. Kennedy, Int. J. Biol. Macromol. 166 (2021) 694‒706. Crossref

(9). C. Israilides, A. Smith, B. Scanlon, C. Barnett, Biotechnol. Genet. Eng. Rev. 16 (1999) 309‒324. Crossref

(10). C. Barnett, A. Smith, B. Scanlon, C.J. Israilides, Carbohydr. Polym. 38 (1999) 203‒209. Crossref

(11). P. Oğuzhan, F. Yangılar, Pullulan: Production and usage in food industry. African Journal of Food Science and Technology 4 (2013) 57‒63.

(12). Y.V. Brazhnikova, T.D. Mukasheva, L.V. Ignatova. Shtamm Drojjepodobnogo Griba Aureobasidium pullulans C7‒Producent Ekzopolisaharida i Indoliluksusnoi Kisloti [Strain of Yeast-like Fungus Aureobasidium pullulans C7‒PRODUCER of Exopolysaccharide and Indolylacetic Acid] No. 32992. RK Patent. 2018, August 6.

(13). Y. Goksungur, P. Uzunogullari, S. Dagbagli, Carbohydr. Polym. 83 (2011) 1330‒1337. Crossref

(14). A.A. Al-Hassan, M.H. Norziah, Food Hydrocoll. 26 (2012) 108‒117. Crossref

(15). B. Ghanbarzadeh, H. Almasi, A.A. Entezami, Innov. Food Sci. Emerg. Technol. 11 (2010) 697‒702. Crossref

(16). K.R. Sugumaran, E. Gowthami, B. Swathi, S. Elakkiya, et al., Carbohydr. Polym. 92 (2013) 697‒703. Crossref

(17). R.S. Singh, N. Kaur, J.F. Kennedy, Carbohydr. Polym. 217 (2019) 46‒57. Crossref

(18). S. Tokumasu, K. Tubaki, L. Manoch. 1997. Micro¬fungal communities on decaying pine needles in Thailand. pp. 93–106. In K.K. Janardhanan, K.R. Natarajan and D.L. Hawksworth, eds. Tropical My¬cology. Science Publishers Inc, USA.

(19). I. Babjeva, I. Reshetova. Yeast Resources in Natural Habitats at Polar Circle Latitude. Food Technol Biotech. 36 (1998) 1–5.

(20). L. Zhang, W. Liu, J. Ji, L. Deng, et al., Front. Bioeng. Biotechnol. 8 (2021). Crossref

(21). X. Kourilova, I. Pernicova, M. Vidlakova, R. Krejcirik, et al., Bioengineering 8 (2021) 141. Crossref

(22). N. Laohakunjit, A. Noomhorm, Starch - Stärke 56 (2004) 348‒356. Crossref

(23). M.A. Rojas-Graü, R.J. Avena-Bustillos, M. Friedman, P.R. Henika, et al., J. Agric. Food Chem. 54 (2006) 9262‒9267. Crossref

(24). M. Gniewosz, A. Synowiec, Flavour Fragr. J. 26 (2011) 389‒395. Crossref

(25). R. Gnanasambandam, N.S. Hettiarachchy, M. Coleman, J. Food Sci. 62 (1997) 395‒398. Crossref

(26). Y. Pranoto, V.M. Salokhe, S.K. Rakshit, Food Res. Int. 38 (2005) 267‒227. Crossref

(27). T.A. Savitskaya, Edible polymeric films and coatings: history and current status (a review). Polymer materials and technologies 2 (2016) 6–36.

(28). M. Oussalah, S. Caillet, S. Salmieri, L. Saucier, M. Lacroix, J. Food Prot. 69 (2006) 2364‒2369. Crossref

(29). Y. Zhao, Z. Zhang, Y. Ning, P. Miao, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 293 (2023) 122510. Crossref

(30). M. Maizura, A. Fazilah, M.H. Norziah, A.A. Karim, J. Food Sci. 72 (2007) C324‒C330. Crossref

Downloads

Published

2024-02-15

How to Cite

Ignatova, L., Urazova, Z., Brazhnikova, Y., & Vedyashkina, N. (2024). Obtaining Edible Pullulan-based Films with Antimicrobial Properties . Eurasian Chemico-Technological Journal, 25(4), 241–247. https://doi.org/10.18321/ectj1547

Issue

Section

Articles