Antihyperglycemic, Antihyperlipidemic, and Antioxidant Effects of Morin on Streptozotocin-Induced Diabetic Rats

Authors

  • A. Beyatli University of Health Sciences, Department of Medicinal and Aromatic Plants, 34668 Üsküdar, Istanbul, Türkiye
  • N. Gül Ankara University, Faculty of Science, Department of Biology, 06100 Tandoğan, Ankara, Türkiye
  • Ş. Coşkun Cevher Gazi University, Faculty of Science, Department of Biology, 06500 Beşevler, Ankara, Türkiye
  • N. Arı Ankara University, Faculty of Pharmacy, Department of Pharmacology, 06100 Tandoğan, Ankara, Türkiye

DOI:

https://doi.org/10.18321/ectj1611

Keywords:

morin, streptozotocin, diabetes, pancreas, β cell, oxidative stress

Abstract

Recently, natural remedies for the management of diabetes observed a rise in interest as a result of the negative impacts of conventional treatment. The present work studies the beneficial effects of morin in normal and streptozotocin-induced diabetic rats on glucose levels, tissue antioxidant state, and lipid peroxidation. Oral delivery of morin (25 and 50 mg/kg body weight/day) for 21 days to normal and diabetic rats could not prevent weight loss, but consumption of food and water (25 mg/kg) was considerably reduced. Morin substantially decreased glucose, total cholesterol, triglycerides, LDL cholesterol, and VLDL cholesterol in the blood of diabetic rats. Additionally, it greatly halted the rise in aspartate aminotransferase and alanine aminotransferase levels as well as the decline in HDL cholesterol levels in diabetic rats. In comparison to normal rats, diabetic rats had higher levels of malondialdehyde, lower levels of nitric oxide, decreased glutathione, and lower levels of superoxide dismutase in their hepatic, renal, and pancreatic tissues. The morin treatments substantially reduced the levels of hepatic and pancreatic reduced glutathione, hepatic and pancreatic reduced nitric oxide, and hepatic, renal, and pancreatic superoxide dismutase. They also prevented the increase of hepatic, renal, and pancreatic malondialdehyde. Histopathological findings revealed a reduction in pancreatic damage in morin-treated rats. Morin exerts antihyperglycemic, antihyperlipidemic, and antioxidant activities in diabetic rats.

References

(1). American Diabetes Association, Diabetes Care. 31 (1, Suppl. 1) (2008) S12–S54. Crossref

(2). D. Bonnefont-Rousselot, Curr. Opin. Clin. Nutr. Metab. Care 5 (2002) 561–568. Crossref

(3). B. Halliwell, J.M. Gutteridge, Free Radicals in Biology and Medicine. Oxford Universi¬ty Press, USA, 2015. Crossref

(4). The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 20 (1997) 1183–1197. Crossref

(5). A.F. Fidan, I. Kucukkurt, H. Yuksel, A. Ozdemir, et al., Journal of Animal and Veterinary Advances 8 (2009) 920–927.

(6). S. Srinivasan, L. Pari, Chem. Biol. Interact. 195 (2012) 43–51. Crossref

(7). A. Caselli, P. Cirri, A. Santi, P. Paoli., Curr. Med. Chem. 23 (2016) 774–791. Crossref

(8). K. Sinha, J. Ghosh, P.C. Sil. Morin and its role in chronic diseases. In: Anti-inflammatory Nutra¬ceuticals and Chronic Diseases. Springer, 2016, p. 453–471. Crossref

(9). A. Beyatli, E.G.G. Peker, N. Gül, Ş.C. Cevher, J. Anatol. Environ. Anim. Sci. 7 (2022) 257–262. Crossref

(10). S.H. Fang, Y.C. Hou, W.C. Chang, S.L. Hsiu, et al., Life Sci. 74 (2003) 743–756. Crossref

(11). S. Mottaghi, H. Abbaszadeh, Phytother. Res. 35 (2021) 6843–6861. Crossref

(12). K.S. Shali, N.P.P. Soumya, S. Mondal, S. Mini, Bioact. Compd. Health Dis. 5 (2022) 53–66. Crossref

(13). Q. Meng, L. Pu, Q. Lu, B. Wang, et al., Int. Immunopharmacol. 100 (2021) 108096. Crossref

(14). N. Wang, J. Zhang, M. Qin, W. Yi, et al., Int. J. Mol. Med. 41 (2018) 1409–1418. Crossref

(15). T. Yugarani, B.K.H. Tan, M. Teh, N.P. Das, Lipids 27 (1992) 181–186. Crossref

(16). J.A. Buege, S.D. Aust, Methods Enzymol. 52 (1978) 302–310. Crossref

(17). L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, et al., Anal. Biochem. 126 (1982) 131–138. Crossref

(18). G.L. Ellman, Arch. Biochem. Biophys. 82 (1959) 70– 77. Crossref

(19). Y.I. Sun, L.W. Oberley, Y. Li, Clin. Chem. 34 (1988) 497–500. Crossref

(20). S. Lenzen, Diabetologia 51 (2008) 216–226. Crossref

(21). Y.X. Lu, Q. Zhang, J. Li, Y.X. Sun, et al., Am. J. Chinese Med. 38 (2010) 713–725. Crossref

(22). O. Kwon, P. Eck, S. Chen, C.P. Corpe, et al., FASEB J. 21 (2007) 366–377. Crossref

(23). R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell. Harper’s Biochemistry. Appleton and Lange, Stamford, CT., 2000.

(24). A.D. Mooradian, Nat. Rev. Endocrinol. 5 (2009) 150–159. Crossref

(25). A.A.H. Fernandes, E.L.B. Novelli, K. Okoshi, M.P. Okoshi, et al., Biomed. Pharmacother. 64 (2010) 214–219. Crossref

(26). A. Lemhadri, L. Hajji, J.B. Michel, M. Eddouks, J. Ethnopharmacol. 106 (2006) 321–326. Crossref

(27). G.K. Oloyede, P.A. Onocha, O.A. Adaramoye, S.E. Thonda, Res. J. Phytochem. 5 (2011) 190–200. Crossref

(28). Ç. Karasu, Free Radic. Biol. Med. 27 (1999) 16–27. Crossref

(29). G.J. Stark, J. Membr. Biol. 205 (2005) 1–16. Crossref

(30). J. El Ghoul, M. Smiri, S. Ghrab, NA Boughattas, et al., Pathophysiol. 19 (2012) 35–42. Crossref

(31). W. Zhang, Y. Wang, Z. Yang, J. Qiu, et al., J. Biosci. Bioeng. 112 (2011) 215–218. Crossref

(32). M. Lorenzi, J. Diabetes Res. 2007 (2007). Crossref

(33). A.C. Maritim, B.H. Moore, R.A. Sanders, J.B. Watkins, Int. J. Toxicol. 18 (1999) 161–166. Crossref

(34). M.Y. Qi, K. Chen, H.R. Liu, Y. Su, S.Q. Yu, J. Ethnopharmacol. 138 (2011) 731–736Crossref

(35). P. Arulselvan, S.P. Subramanian, Chem. Biol. Interact. 165 (2007) 155–164. Crossref

(36). M. Gayathri, K. Kannabiran, Indian J. Clin. Biochem. 23 (2008) 394–400. Crossref

(37). S. Kumar, A.K. Pandey, Sci. World J. 2013 (2013) 162750. Crossref

Downloads

Published

2024-06-27

How to Cite

Beyatli, A., Gül, N., Coşkun Cevher, Ş., & Arı, N. (2024). Antihyperglycemic, Antihyperlipidemic, and Antioxidant Effects of Morin on Streptozotocin-Induced Diabetic Rats. Eurasian Chemico-Technological Journal, 26(2), 85–92. https://doi.org/10.18321/ectj1611

Issue

Section

Articles