Heat Capacity of Fish Oil at High Temperatures and Pressures
DOI:
https://doi.org/10.18321/ectj1642Keywords:
fish oil, heat capacity, high temperatures, high pressuresAbstract
This paper reports new results from studies of the isobaric heat capacities of OMEGA-3 “950” fish oil provided by SOLGAR INC (USA) at high temperatures and high pressures. The measurements were carried out on a differential scanning calorimeter (ITs-400) with an automatic data acquisition system in the temperature range from 298.15 to 473.15 K and at pressures from 0.098 to 39.2 MPa. The coverage factor for the 95% confidence level for a two-way coverage interval is assumed to be 2. The expanded measurement uncertainty of heat capacity is estimated to be 2.4%, pressure is estimated to be 0.05% and temperature is estimated to be 15 mK. Experimental data on the fish oil isobaric heat capacity as a function of temperature and pressure are approximated by the correlation equation proposed in the work. At atmospheric pressure, the deviations between those calculated by the correlation equation and the current measured data on isobaric heat capacity are within the range of average absolute deviations (AAD) = 0.22% (standard deviation St. Dev = 0.28% and maximum deviation Max. Dev = 0.39%). Additionally, a comparison was made of the state parameters obtained during the experiment and the literature data at the studied parameters.
References
(1). J. Cvengroš, Z. Cvengrošová, Biom. Bioener. 27 (2004) 173−181. Crossref
(2). S.V. Mazanov, F.M. Gumerov, R.A. Usmanov, et al., Biodiesel fuel. Part I. Methods of obtaining. Power engineering: research, equipment, technology. 24 (2022) 16−49. (In Russ.). Crossref
(3). K. Iyer, P. Prasad, S. Mythili, A. Sathiavelu, International Journal of Life Sciences and Technology 4 (2011) 19−30. URL
(4). J. Ferrell, V. Sarisky-Reed. National Algal Biofuels Technology Roadmap: A technology roadmap resulting from the National Algal Biofuels Workshop and Roadmap sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Office of the Biomass Program Publication Date: May 2010, p. 140. URL
(5). N.M. Verma, S. Mehrotra, A. Shukla, B.N. Mishra, Afr. J. Biotechnology 9 (2010) 1402–1411. Crossref
(6). L. Gouveia, A.C. Oliveira, J. Ind. Microbiol Biotechnol. 36 (2009) 269–274. Crossref
(7). X. Li, J. Liu, G. Chen, et al., Algal Research 43 (2019) 101619. Crossref
(8). S. Sathivel, W. Prinyawiwatkul, I.I. Negulescu, et al, J Am. Oil Chem. Soc. 85 (2008) 291–296. Crossref
(9). S. Sathivel, J. Am. Oil Chem. Soc. 82 (2005) 147−157. Crossref
(10). F.N. Shamsetdinov, S.A. Bulaev, Z.I. Zaripov, Bulletin of Kazan State Technical University named after A.N. Tupolev [Vestnik Kazanskogo gosudarstvennogo tehnicheskogo universiteta im. A.N. Tupoleva] 2 (2011) 11−16. (in Russ.). URL
(11). Z.I. Zaripov, S.V. Mazanov, J.M. Kouagou, et al., Bulletin of Kazan State Technical University named after A.N. Tupolev [Vestnik Kazanskogo gosudarstvennogo tehnicheskogo universiteta im. A.N. Tupoleva] 4 (2021) 9–13. (in Russ.). URL
(12). A. Bondi, Ind. Eng. Chem. Fundamen. 5 (1966) 442−449. Crossref
(13). D.N. Rihani, L.K. Doraiswamy, Ind. Eng. Chem. Fundamen. 4 (1965) 17−21. Crossref
(14). L.P. Filippov. Prediction of thermophysical properties of liquids and gases [Prognozirovanie teplofizicheskih svojstv zhidkostej i gazov]. M.: Energoatomizdat, 1988, 167 p. (in Russ.). ISBN: 5-283-00009-5
(15). V. Ruzicka, E.S. Domalski, J. Phys. Chem. Ref. Data 22 (1993) 619−657. Crossref
(16). R. Ceriani, R. Gani, A.J.A. Meirelles, Fluid Phase Equilibr. 283 (2009) 49−55. Crossref
(17). X. Zhu, D.M. Phinney, S. Paluri, D.R. Heldman, J. Food Sci. 83 (2018). Crossref
(18). E.S. Platunov. Thermophysical measurements in monotonic mode [Teplofizicheskie izmerenija v monotonnom rezhime]. L.: Energy, 1972, 143 p. (in Russ.).
(19). R.A. Usmanov, R.R. Gabitov, Sh.A. Biktashev, et al., Russ. J. Phys. Chem. 5 (2011) 1216–1227. Crossref
(20). Z.I. Zaripov, A.U. Aetov, R.R. Nakipov, et al., J. Molec. Liq. 307 (2020) 112935. Crossref
(21). Z.I. Zaripov, A.U. Aetov, R.R. Nakipov, et al, J. Chem. Thermodyn. 152 (2021) 106270. Crossref
(22). W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31 (2002) 387−535. Crossref
(23). E.W.,Lemon, E.W. Bell, M.L. Huber, M.O. McLinden, 2018. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0.
(24). Z.I. Zaripov, R.R. Nakipov, S.V. Mazanov, F.M. Gumerov, Russ. J. Phys. Chem. 98 (2024) 2256–2261. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.