Heat Capacity of Fish Oil at High Temperatures and Pressures

Authors

  • Z.I. Zaripov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • R.R. Nakipov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • S.V. Mazanov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • A.Kh. Sadykov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • A.R. Gabitova Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • A.U. Aetov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation
  • F.M. Gumerov Kazan National Research Technological University, 68 Karl Marx str., Kazan, Russian Federation

DOI:

https://doi.org/10.18321/ectj1642

Keywords:

fish oil, heat capacity, high temperatures, high pressures

Abstract

This paper reports new results from studies of the isobaric heat capacities of OMEGA-3 “950” fish oil provided by SOLGAR INC (USA) at high temperatures and high pressures. The measurements were carried out on a differential scanning calorimeter (ITs-400) with an automatic data acquisition system in the temperature range from 298.15 to 473.15 K and at pressures from 0.098 to 39.2 MPa. The coverage factor for the 95% confidence level for a two-way coverage interval is assumed to be 2. The expanded measurement uncertainty of heat capacity is estimated to be 2.4%, pressure is estimated to be 0.05% and temperature is estimated to be 15 mK. Experimental data on the fish oil isobaric heat capacity as a function of temperature and pressure are approximated by the correlation equation proposed in the work. At atmospheric pressure, the deviations between those calculated by the correlation equation and the current measured data on isobaric heat capacity are within the range of average absolute deviations (AAD) = 0.22% (standard deviation St. Dev = 0.28% and maximum deviation Max. Dev = 0.39%). Additionally, a comparison was made of the state parameters obtained during the experiment and the literature data at the studied parameters.

References

(1). J. Cvengroš, Z. Cvengrošová, Biom. Bioener. 27 (2004) 173−181. Crossref

(2). S.V. Mazanov, F.M. Gumerov, R.A. Usmanov, et al., Biodiesel fuel. Part I. Methods of obtaining. Power engineering: research, equipment, technology. 24 (2022) 16−49. (In Russ.). Crossref

(3). K. Iyer, P. Prasad, S. Mythili, A. Sathiavelu, International Journal of Life Sciences and Technology 4 (2011) 19−30. URL

(4). J. Ferrell, V. Sarisky-Reed. National Algal Biofuels Technology Roadmap: A technology roadmap resulting from the National Algal Biofuels Workshop and Roadmap sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Office of the Biomass Program Publication Date: May 2010, p. 140. URL

(5). N.M. Verma, S. Mehrotra, A. Shukla, B.N. Mishra, Afr. J. Biotechnology 9 (2010) 1402–1411. Crossref

(6). L. Gouveia, A.C. Oliveira, J. Ind. Microbiol Biotechnol. 36 (2009) 269–274. Crossref

(7). X. Li, J. Liu, G. Chen, et al., Algal Research 43 (2019) 101619. Crossref

(8). S. Sathivel, W. Prinyawiwatkul, I.I. Negulescu, et al, J Am. Oil Chem. Soc. 85 (2008) 291–296. Crossref

(9). S. Sathivel, J. Am. Oil Chem. Soc. 82 (2005) 147−157. Crossref

(10). F.N. Shamsetdinov, S.A. Bulaev, Z.I. Zaripov, Bulletin of Kazan State Technical University named after A.N. Tupolev [Vestnik Kazanskogo gosudarstvennogo tehnicheskogo universiteta im. A.N. Tupoleva] 2 (2011) 11−16. (in Russ.). URL

(11). Z.I. Zaripov, S.V. Mazanov, J.M. Kouagou, et al., Bulletin of Kazan State Technical University named after A.N. Tupolev [Vestnik Kazanskogo gosudarstvennogo tehnicheskogo universiteta im. A.N. Tupoleva] 4 (2021) 9–13. (in Russ.). URL

(12). A. Bondi, Ind. Eng. Chem. Fundamen. 5 (1966) 442−449. Crossref

(13). D.N. Rihani, L.K. Doraiswamy, Ind. Eng. Chem. Fundamen. 4 (1965) 17−21. Crossref

(14). L.P. Filippov. Prediction of thermophysical properties of liquids and gases [Prognozirovanie teplofizicheskih svojstv zhidkostej i gazov]. M.: Energoatomizdat, 1988, 167 p. (in Russ.). ISBN: 5-283-00009-5

(15). V. Ruzicka, E.S. Domalski, J. Phys. Chem. Ref. Data 22 (1993) 619−657. Crossref

(16). R. Ceriani, R. Gani, A.J.A. Meirelles, Fluid Phase Equilibr. 283 (2009) 49−55. Crossref

(17). X. Zhu, D.M. Phinney, S. Paluri, D.R. Heldman, J. Food Sci. 83 (2018). Crossref

(18). E.S. Platunov. Thermophysical measurements in monotonic mode [Teplofizicheskie izmerenija v monotonnom rezhime]. L.: Energy, 1972, 143 p. (in Russ.).

(19). R.A. Usmanov, R.R. Gabitov, Sh.A. Biktashev, et al., Russ. J. Phys. Chem. 5 (2011) 1216–1227. Crossref

(20). Z.I. Zaripov, A.U. Aetov, R.R. Nakipov, et al., J. Molec. Liq. 307 (2020) 112935. Crossref

(21). Z.I. Zaripov, A.U. Aetov, R.R. Nakipov, et al, J. Chem. Thermodyn. 152 (2021) 106270. Crossref

(22). W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31 (2002) 387−535. Crossref

(23). E.W.,Lemon, E.W. Bell, M.L. Huber, M.O. McLinden, 2018. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0.

(24). Z.I. Zaripov, R.R. Nakipov, S.V. Mazanov, F.M. Gumerov, Russ. J. Phys. Chem. 98 (2024) 2256–2261. Crossref

Downloads

Published

2024-10-22

How to Cite

Zaripov, Z., Nakipov, R., Mazanov, S., Sadykov, A., Gabitova, A., Aetov, A., & Gumerov, F. (2024). Heat Capacity of Fish Oil at High Temperatures and Pressures. Eurasian Chemico-Technological Journal, 26(3), 185–195. https://doi.org/10.18321/ectj1642

Issue

Section

Articles

Most read articles by the same author(s)