The Laser Active Element Based on Dye on Porous Alumina
DOI:
https://doi.org/10.18321/ectj171Abstract
Luminescent properties of Rhodamine 6G in porous alumina matrix have been investigated. From the SEM images the pore diameter is determined to be ~ 50 nm and the distance between the pores to be about 250 nm. Specific surface area of nanoporous alumina films measured by gas adsorption (BET method) was 6 m2/g. Absorption and fluorescence spectra of Rhodamine 6G embedded in pores of anodic alumina oxide were measured. Decreasing of absorbance of monomers was observed upon increasing of Rhodamine 6G concentrations. At the same time appearing of new maximum at the short-wavelength part as a result of formation of dimer of dye was registered. Increasing of concentration of dye molecules in the pores leads to quenching of fluorescence of Rhodamine 6G. The lasing characteristics were examined upon excitation of the samples by second harmonic Nd: YAG laser λgen = 532 nm, Еimp = 90 mJ, τ = 10 ns in the longitudinal form. The dye generation spectra in nanoporous alumina under different power densities of the pump source were measured. It is established that when the pumping source power is 0.4 MW/cm2 on the background spectrum of laser - induced fluorescence the narrow strip of the laser emission with a peak wavelength of 572 nm appears. Further increase in the power density of the pumping source leads to a narrowing of the band of generation and an increase in its intensity. The obtained results demonstrate the potential of using nanoporous alumina for creating the active elements of quantum electronics.
References
2. E.T. Knobbe, B. Dunn, P.D. Fuqua, F. Nishida Appl. Optics 18:2729 (1990).
3. C. Ye, K.S. Lam, A.K. Lam, L. Lo. Appl. Phys. B 65:109 (1997).
4. M.R. Lukatskaya, L.A. Trusov, A.A. Eliseev, A.V. Lukashin, M. Jansen, P.E. Kazin, K.S. Napolskii. Chem. Commun. 47:2396 (2011).
5. K.S. Napolskii, P.J. Barczuk, S.Yu. Vassiliev, A.G. Veresov, G.A. Tsirlina, P.J. Kulesza. Electrochimica Acta 52:7910 (2007).
6. K.S. Napolskii, I.V. Roslyakov, A.A. Eliseev, D.I. Petukhov, A.V. Lukashin, S.-F. Chen, C.-P. Liu, G.A. Tsirlina. Electrochimica Acta 56:2378 (2011).
7. L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov. Progress in Physical Science 6:619 (2007).
8. G.E. Thompson. Thin Solid Films 297:192 (1997).
9. A.A. Eliseyev, A.V. Lujashin, in Yu.D. Tretyakov (ed.), Functional nanomaterials, FIZMATLIT, Moscow, 2010,
p. 456.
10. Du Y., Cai W.L., Mo C.M., Chen J. Appl. Phys. Lett. 20:2951 (1999).
11. G. Shi, C.M. Mo, W.L. Cai, L.D. Zhang. Solid State Comm. 5:253 (2000).
12. N.V. Gaponenko, O.V. Sergeev, E.A. Stepanova, V.M. Parkun, A.V. Mudryi, H. Gnaser, J. Misiewicz,
R. Heiderhoff, L.J. Balk, G.E. Thompson. Electrochem J. Soc. 148:H13 (2001).
13. Y.W. Wang, G.W. Meng, L.D. Zhang, C.H. Liang, Zhang J. Chem. Mater. 14:1773-1777 (2002).
14. Z.L. Zhang, H.R. Zheng, J. Dong, X.Q. Yan, Y. Sun, H.X. Xu. Sci. China Phys., Mech. Astronomy 5:767 (2012).
15. A. Moadhen, H. Elhouichet, L. Nosova, M. Oueslati. J. of Lum. 126:789 (2007).
16. M.J. Assael, S. Botsion, K. Gialou, I.N. Netaxa Int. J. Thermophysics 5:1595 (2005).
17. I.V. Roslyakov, K.S. Napolsky, P.V. Evdokimov, F.S. Napolsky, A.V. Dunaev, A.A. Eliseev, A.V. Lukashin, Yu.D. Tretyakov. Nanosystems: physics, chemistry, mathematics 1:120 (2013).
18. K. Nielsch, J. Choi, K. Schwirn. Nano Letters 2:667 (2002).
19. V.I. Yuzhakov. Russian Progress in Chemistry 6:1114 (1992).
20. S.A. Yeroshina, N.Kh. Ibrayev, S.E. Kudaibergenov, F. Rullens, M. Devillers, А. Laschewsky. Thin Solid Films 516:2109 (2008).
21. S. Parker. Photoluminescence of solutions. Mir, Mocow, 1972, p. 510.
22. A.V. Butenin, B.Y. Kogan, N.V. Gundobin. Optics and Spectr. 5:1022 (1979).
23. D.A. Gromov, K.M. Dumaev, A.A. Manenkov, A.P. Maslyukov. Proceedings of USSR AS, Physics 46:1956 (1982).
24. T.B. Bermas, A.V. Bortkewich, Y.V. Kostenich Quantum Electronics 21:29 (1994).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.