Knock Characteristics of Gas Fuels in the Light of the Kinetics of Hydrogen and Methane Oxidation

Authors

  • Vladimir Arutyunov N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia
  • Artem Arutyunov 1N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia; Shenzhen MSU-BIT University, Shenzhen, 518172, China
  • Andrey Belyaev Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia
  • Liudmila Strekova N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia

DOI:

https://doi.org/10.18321/ectj1653

Keywords:

Gas fuels, Hydrogen, Methane, Ignition delay time, Knock resistance

Abstract

Understanding and operational assessment of the knock behavior of environmentally friendly gas engine fuels is very important for expanding their practical application. Recent studies of the autoignition of hydrogen and methane at temperatures typical for this process in internal combustion engines (800<T<1000 K) have shown that near 900 K, fundamental changes occur in the mechanisms of their oxidation associated with a change in the role of peroxide compounds in them. This leads to very abrupt changes in the autoignition dependence of mixtures containing them on temperature, pressure, and composition. In particular, near this temperature, depending on the composition of methane-hydrogen mixtures, such an important characteristic of their ignition as the activation energy of the ignition delay time can vary almost 4 times. Based on the analysis of the published data, this paper analyzes the nature of these changes and the related problem of assessing the knock resistance of gas fuels. It has been shown that the Methane Number, a common indicator of the knock resistance of gas fuels, is principally inapplicable for hydrocarbon gas fuels. The reason for this is the fundamental difference between the effect on ignition and combustion of methane, the main component of hydrocarbon gas fuels, admixtures of its heavier homologues, and hydrogen. An important reason is also some peculiarities of low-temperature hydrogen ignition. Although a theoretical assessment of the knock resistance of gas fuels containing methane and hydrogen is possible, it is of little use in practice. Thus, the development of a practically applicable scale for assessing the knock resistance of gas fuels remains an acute problem.

References

(1) B.P. Statistical. Review of World Energy, 71 (2022). Available online: URL (accessed on 21 June 2024).

(2) The Paris Agreement. Available online: URL (accessed on 21 June 2024).

(3) C.K. Westbrook, M. Sjöberg, N.P. Cernansky, A new chemical kinetic method of determining RON and MON values for single component and multicomponent mixtures of engine fuels. Combust. Flame 195 (2018) 50–62. Crossref

(4) A. Burcat, K. Scheller, A. Lifshitz, Shock-tube investigation of comparative ignition delay times for C1-C5 alkanes. Combust. Flame 16 (1971) 29–33. Crossref

(5) N. Lamoureux, C.-E. Paillard, V. Vaslier, Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves. Shock Waves 11 (2002) 309–322. Crossref

(6) D. Healy, H.J. Curran, S. Dooley, J. Simmie, D. Kalitan, E. Petersen, G. Borque, Methane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures. Combust. Flame 155 (2008) 451–461. Crossref

(7) A.A. Mohamed, S. Panigrahy, A.B. Sahu, G. Bourque, H. Curran, An experimental and kinetic modeling study of the auto-ignition of natural gas blends containing C1–C7 alkanes. Proc. Combust. Inst. 38 (2021) 365–373. Crossref

(8) A.A. Mohamed, R.F.D. Monaghan, G. Bourque, H. Curran, Ignition delay times of C1–C7 natural gas blends in the intermediate and high temperature regimes: Experiment and correlation. Fuel 354 (2023) 129299. Crossref

(9) I.S. Gersen, N.B. Anikin, A.V. Mokhov, H.B. Levinsky, Ignition properties of methane/hydrogen mixtures in a rapid compression machine. Int. J. Hydrog. Energy 38 (2008) 1957–1964. Crossref

(10) S. Drost, S. Eckart, C. Yu, R. Schießl, H. Krause, U. Maas, Numerical and experimental investigations of CH4/H2 mixtures: Ignition delay times, laminar burning velocity and extinction limits. Energies 16 (2023) 2621. Crossref

(11) B. Lewis, G. Elbe, Combustion, Flames and Explosions of Gases, Academic Press, Orlando, FL, USA, 1987.

(12) V. Arutyunov, Direct Methane to Methanol: Foundations and Prospects of the Process, Elsevier B.V., Amsterdam, The Netherlands, 2014. Crossref

(13) V.S. Arutyunov, A.V. Arutyunov, A.A. Belyaev, K.Ya. Troshin, Controlled ignition oflow-carbon gas engine fuels based on natural gas and hydrogen: kinetics of the process. Russ. Chem. Rev. 92 (2023) RCR5084. Crossref

(14) K.Ya. Troshin, A.V. Nikitin, A.A. Belyaev, A.V. Arutyunov, A.A. Kiryushin, V.S. Arutyunov, Experimental determination of self-ignition delay of mixtures of methane with light alkanes. Combust. Explos. Shock Waves 55 (2019) 526–533. Crossref

(15) V. Arutyunov, A. Belyaev, A. Arutyunov, K. Troshin, A. Nikitin, Autoignition of methane–hydrogen mixtures below 1000 K. Processes 10 (2022) 2177. Crossref

(16) K.Ya. Troshin, A.A. Belyaev, A.V. Arutyunov, V.S. Arutyunov, Ignition of mixtures of CH4 and CO. Combust. Explos. Shock Waves 60 (2024). Crossref

(17) K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, Natural gas to synthesis gas – Catalysts and catalytic processes. J. Nat. Gas Sci. Eng. 3 (2011) 423–459. Crossref

(18) S. Soleimani, M. Lehner, Tri-reforming of methane: Thermodynamics, operating conditions, reactor technology and efficiency evaluation – A review. Energies 15 (2022) 7159. Crossref

(19) J.-E. Apolinar-Hernandez, S.L. Bertoli, H.G. Riella, C. Soares, N. Padoin, An overview of low-temperature Fischer−Tropsch synthesis: Market conditions, raw materials, reactors, scale-up, process intensification, mechanisms, and outlook. Energy Fuels 38 (2023) 1–28. Crossref

(20) M. Leiker, K. Christoph, M. Rankl, W. Cantellieri, U. Pfeifer, Evaluation of anti-knocking property of gaseous fuels by means of methane number and its practical application to gas engines, ASME-72-DGP-4 (1972). Available online: URL (accessed on 3 January 2024).

(21) G. Palmer, Methane number. J. Nat. Gas Eng. 2 (2017) 134–142. Crossref

(22) O.N. Didmanidze, A.S. Afanasev, R.T. Khakimov, Natural gas methane number and its influence on the gas engine working process efficiency. J. Min. Inst. 251 (2021) 730–737. Crossref

(23) G. Brecq, J. Bellettre, M. Tazerout, T. Muller, Knock prevention of CHP engines by addition of N2 and CO2 to the natural gas fuel. Appl. Therm. Eng. 23 (2003) 1359–1371. Crossref

(24) M. Malenshek, D.B. Olsen, Methane number testing of alternative gaseous fuels. Fuel 88 (2009) 650–656. Crossref

(25) Fuel Quality Calculator. Available online: URL (accessed on 21 June 2024).

(26) Wärtsilä Methane Number Calculator. Available online: URL (accessed on 21 June 2024).

(27) A.Z. Mendiburu, J.A. Carvalho Jr., Y. Ju, Flammability limits: A comprehensive review of theory, experiments, and estimation methods. Energy Fuels 37 (2023) 4151–4197. Crossref

(28) V.N. Smirnov, G.A. Shubin, A.V. Arutyunov, P.A. Vlasov, A.A. Zakharov, V.S. Arutyunov, Low-temperature ignition of concentrated syngas mixtures behind reflected shock waves. Russ. J. Phys. Chem. B 16 (2022) 1092–1101. Crossref

(29) Y. Zhang, X. Jiang, L. Wei, J. Zhang, C. Tang, Z. Huang, Experimental and modeling study on auto-ignition characteristics of methane/hydrogen blends under engine relevant pressure. Int. J. Hydrog. Energy 37 (2012) 19168. Crossref

(30) K.Ya. Troshin, A.V. Nikitin, A.A. Borisov, V.S. Arutyunov, Low-temperature autoignition of binary mixtures of methane with C3–C5 alkanes.Combust. Explos. Shock Waves 52 (2016) 386–393. Crossref

(31) A.V. Arutyunov, K.Ya. Troshin, A.V. Nikitin, A.A. Belyaev, V.S. Arutyunov, Computer modeling of self-ignition delays of methane-alkane mixtures, IOP Conf. Ser.: J. Phys.: Conf. Ser. 1141 (2018) 012153. Crossref

(32) NUI Galway, Mechanism Downloads. Available online: URL (accessed on 29 December 2023).

(33) V.S. Arutyunov, Hydrogen energy: Significance, sources, problems, and prospects (A review). Petrol. Chem. 62 (2022) 583–593. Crossref

(34) V.S. Arutyunov, On the sources of hydrogen for the global replacement of hydrocarbons. Acad. Lett. 3692 (2021). Crossref

(35) I.A. Makaryan, I.V. Sedov, E.A. Salgansky, A.V. Arutyunov, V.S. Arutyunov, A comprehensive review on the prospects of using hydrogen-methane blends: Challenges and opportunities. Energies 15 (2022) 2265. Crossref

(36) Hydrogen Storage Tech Team Roadmap, July 2017. Available online: URL (accessed on 29 December 2023).

(37) L.M. Kustov, A.N. Kalenchuk, V.I. Bogdan, Systems for accumulation, storage and release of hydrogen. Russ. Chem. Rev. 89 (2020) 897–916. Crossref

(38) D. Mahajan, K. Tan, T. Venkatesh, P. Kileti, C.R. Clayton, Hydrogen blending in gas pipeline networks – A review. Energies 15 (2022) 3582. Crossref

(39) G.A. Karim, I. Wierzba, Y. Al-Alousi, Methane-hydrogen mixtures as fuels. Int. J. Hydrog. Energy 21 (1996) 625–631. Crossref

(40) S. Verhelst, T. Wallner, Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 35 (2009) 490–527. Crossref

(41) S.O. Akansu, M. Bayrak, Experimental study on a spark ignition engine fueled by CH4/H2 (70/30) and LPG. Int. J. Hydrog. Energy 36 (2011) 9260–9266. Crossref

(42) P.M. Diéguez, J.C. Urroz, D. Sáinz, L.M. Gandía, Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures. Appl. Energy 113 (2014) 1068–1076. Crossref

(43) M. Kamil, M.M. Rahman, Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends. Appl. Energy 158 (2015) 556–567. Crossref

(44) M. Klell, H. Eichlseder, M. Sartory, Mixtures of hydrogen and methane in the internal combustion engine – Synergies, potential and regulations. Int. J. Hydrog. Energy 37 (2012) 11531–11540. Crossref

(45) F. Moreno, M. Munoz, J. Arroyo, O. Magén, C. Monné, I. Suelves, Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. Int. J. Hydrog. Energy 37 (2012) 11495–11503. Crossref

(46) L. De Simio, S. Iannaccone, C. Guido, P. Napolitano, A. Maiello, Natural gas/hydrogen blends for heavy-duty spark ignition engines: Performance and emissions analysis. Int. J. Hydrog. Energy 50 (2023) 743–757. Crossref

(47) Y. Zhang, J. Wu, S. Ishizuka, Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and a curved CH4–H2–air premixed flame. Int. J. Hydrog. Energy 34 (2009) 519–527. Crossref

(48) Delorme, A., Rousseau, A., Sharer, P., Pagerit, S. et al., "Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045," SAE Technical Paper 2009-01-1008, 2009. Crossref

(49) U.S. Department of Energy, FreedomCAR and Vehicle Technologies Multi-Year Program Plan 2006–2011. Available online: URL (accessed on 29 December 2023).

(50) Y. Zhang, Z. Huang, L. Wei, X. Zhang, C.K. Law, Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame 159 (2012) 918–931. Crossref

(51) J. Herzler, C. Naumann, Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0% to 100% at different pressures. Proc. Combust. Inst. 32 (2009) 213–220. Crossref

(52) A.V. Arutyunov, A.A. Belyaev, I.N. Inovenkov, V.S. Arutyunov, The influence of hydrogen on the burning velocity of methane–air mixtures at elevated temperatures. Combust. Explos. [Gorenie i Vzryv] 12 (2019) 4–10. Crossref

(53) K. Van, A. Hu, J.Z. Fang, T.K. Bera, A.A. Aradi, F.N. Egolfopoulos, Effects of hydrogen addition on the propagation and autoignition of methane/oxygen/inert mixtures under engine-relevant conditions. Combust. Flame 259 (2024) 113197. Crossref

(54) V.S. Arutyunov, V.Y. Basevich, V.I. Vedeneev, L.B. Romanovich, Kinetic modeling of direct gas-phase methane oxidation to methanol at high pressures. Kinet. Catal. 37 (1996) 16–22.

(55) A.A. Belyaev, A.V. Nikitin, P.D. Toktaliev, P.A. Vlasov, A.V. Ozerskiy, A.S. Dmitruk, A.V. Arutyunov, V.S. Arutyunov, Analysis of the literature models of methane oxidation in the region of moderate temperatures. Combust. Explos. 11 (2018) 19–26.

(56) N.N. Semenov, On Some Problems of Chemical Kinetics and Reactivity, Elsevier (1958).

(57) S.M. Sarathy, C.K. Westbrook, M. Mehl, W.J. Pitz, C. Togbe, P. Dagaut, H. Wang, M.A. Oehlschlaeger, U. Niemann, K. Seshadri, P.S. Veloo, C. Ji, F.N. Egolfopoulos, T. Lu, Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combust. Flame 158 (2011) 2338–2357. Crossref

(58) I. Pielecha, F. Szwajca, K. Skobiej, Numerical investigation on the effects of fueling the turbulent jet ignition gas engine with methane and hydrogen. Rail Vehicles/Pojazdy Szynowe 1–2 (2023) 46–57. Crossref

(59) A.A. Attar, G.A. Karim, Knock rating of gaseous fuels, J. Eng. Gas Turbines Power 125 (2003) 500–504. Crossref

(60) V.M. van Essen, S. Gersen, G.H.J. van Dijk, H.B. Levinsky, Next generation knock characterization, Int. Gas Union Res. Conf., Copenhagen (2014). Available online: URL (accessed on 29 December 2023).

(61) M. van Essen, S. Gersen, G.H.J. van Dijk, M. van Erp, E.H. Levinsky, Algorithm for determining the knock resistance of LNG. Int. J. Energy Power Eng. 8 (2019) 18–27. Crossref

(62) L.J. Spadaccini, M.B. Colket III, Ignition delay characteristics of methane fuels. Prog. Energy Combust. Sci. 20 (1994) 431–460. Crossref

(63) E.L. Petersen, M. Röhrig, D.F. Davidson, R.K. Hanson, C.T. Bowman, High-pressure methane oxidation behind reflected shock waves, Proc. Combust. Inst. 26 (1996) 799–806. Crossref

(64) V. Arutyunov, K. Troshin, A. Nikitin, A. Belyaev, A. Arutyunov, A. Kiryushin, L. Strekova, Selective oxycracking of associated petroleum gas into energy fuel in the light of new data on self-ignition delays of methane-alkane compositions, Chem. Eng. J. 381 (2020) 122706. Crossref

(65) A.T. Balaban, L.B. Kier, N. Joshi, Structure-property analysis of octane numbers for hydrocarbons (alkanes, cycloalkanes, alkenes). MATCH Commun. Math. Comput. Chem. 28 (1992) 13–27. URL

(66) K.Ya. Troshin, A.A. Belyaev, A.V. Arutyunov, A.V. Nikitin, V.S. Arutyunov, Determination of the self-ignition delay of methane–ethylene–air mixtures, Combust. Explos. [Gorenie i Vzryv] 13 (4) (2020) 14–19. Crossref

(67) B. Yang, W. Sun, K. Moshammer, N. Hansen, Review of the influence of oxygenated additives on the combustion chemistry of hydrocarbons. Energy Fuels 35 (2021) 13550. Crossref

(68) C. Tang, L. Wei, J. Zhang, X. Man, Z. Huang, Shock tube measurements and kinetic investigation on the ignition delay times of methane/dimethyl ether mixtures. Energy 26 (2012) 6720–6728. Crossref

Downloads

Published

10-04-2025

How to Cite

Arutyunov, V., Arutyunov, A., Belyaev, A., & Strekova, L. (2025). Knock Characteristics of Gas Fuels in the Light of the Kinetics of Hydrogen and Methane Oxidation . Eurasian Chemico-Technological Journal, 27(1), 21–34. https://doi.org/10.18321/ectj1653

Issue

Section

Article/Review article