Nano- and Micro-Sized LaNi5 Electrochemical Behaviour as Anode Material for Ni-MH Batteries

Authors

  • S.D. Malik Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96А, Tole bi str., Almaty, Kazakhstan
  • Ya.S. Zhigalenok Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96А, Tole bi str., Almaty, Kazakhstan
  • M.K. Skakov National Nuclear Center of the Republic of Kazakhstan, 180010, 2B, Beibyt atom str., Kurchatov, Kazakhstan
  • A.Zh. Miniyazov Institute of Atomic Energy of National Nuclear Center of the Republic of Kazakhstan, 180010, 2B, Beibyt atom st., Kurchatov, Kazakhstan
  • N.M. Mukhamedova Institute of Atomic Energy of National Nuclear Center of the Republic of Kazakhstan, 180010, 2B, Beibyt atom st., Kurchatov, Kazakhstan
  • F.I. Malchik Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96А, Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1652

Keywords:

Hydrogen storage, Ni-MH batteries, Anode material, LaNi5, Nanoparticles

Abstract

This study investigates the electrochemical characteristics of nanostructured LaNi5 intermetallic synthesized via the sol-gel method for application as an anode material in nickel-metal hydride (Ni-MH) batteries. A comparison with a commercial counterpart produced by fusion synthesis with mechanical grinding revealed that the nanostructured material, with primary particle sizes of 300–700 nm, exhibits significantly improved kinetic properties, including reduced charge transfer resistance and more efficient mass transport. The synthesized LaNi5 demonstrates rapid activation, reaching a maximum capacity of 180 mAh/g by the 5th cycle, although degradation to 130 mAh/g is observed by the 50th cycle. In contrast, the commercial sample exhibits slow activation, with a gradual capacity increase to 190 mAh/g followed by stabilization. This discrepancy between enhanced kinetic properties and cycle stability in the nanostructured material presents a promising direction for optimizing anode materials in Ni-MH batteries.

References

(1) N.C. Alluraiah, V. Nandagopal, P. Veeramanikandan, G. D, S. Meena, G. Brindha. Comparison of SoC in Ni-MH and Lithium-Ion Battery for E-Vehicle. Int. J. Electr. Electron. Res. 12 (2024) 1258-1263. Crossref DOI: https://doi.org/10.37391/ijeer.120417

(2) M. Tliha, C. Khaldi, S. Boussami, N. Fenineche, O. El-Kedim, H. Mathlouthi, J. Lamloumi. Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: a review. J. Solid State Electrochem. 18 (2014) 577-593. Crossref DOI: https://doi.org/10.1007/s10008-013-2300-3

(3) L. Ouyang, J. Huang, H. Wang, J. Liu, M. Zhu. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review. Mater. Chem. Phys. 200 (2017)164-178. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2017.07.002

(4) S. Abdimomyn, S. Malik, M. Skakov, Y. Koyanbayev, A. Miniyazov, F. Malchik. Hydrogen Storage Materials: Promising Materials for Kazakhstan's Hydrogen Storage Industry. Eurasian Chem.-Technol. J. 26 (2024) 113-132. Crossref DOI: https://doi.org/10.18321/ectj1635

(5) L. Schlapbach, A. Züttel. Hydrogen-storage materials for mobile applications. Nature 414 (2001) 353-358. Crossref DOI: https://doi.org/10.1038/35104634

(6) G. Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293-295 (1999) 877-888. Crossref DOI: https://doi.org/10.1016/S0925-8388(99)00384-9

(7) R. Sarhaddi, H. Arabi, F. Pourarian. Structural, morphological, magnetic and hydrogen absorption properties of LaNi5 alloy: A comprehensive study. Int. J. Mod. Phys. B 28 (2014) 1450079. Crossref DOI: https://doi.org/10.1142/S0217979214500799

(8) S. Srivastava, S.S.S. Raman, B.K. Singh, O.N. Srivastava. On the synthesis and characterization of some new AB5 type MmNi4.3Al0.3Mn0.4, LaNi5-xSix (x=0.1, 0.3, 0.5) and Mg−x wt% CFMmNi5−y wt% Si hydrogen storage materials. Int. J. Hydrogen Energy 25 (2000) 431-440. Crossref DOI: https://doi.org/10.1016/S0360-3199(99)00055-5

(9) M.H. Enayati, F.A. Mohamed. Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59 (2014) 394-416. Crossref DOI: https://doi.org/10.1179/1743280414Y.0000000036

(10) L. Wei, S. Abd Rahim, M. Al Bakri Abdullah, A. Yin, M. Ghazali, M. Omar, O. Nemeș, A. Sandu, P. Vizureanu, A. Abdellah. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials 16 (2023) 4635. Crossref DOI: https://doi.org/10.3390/ma16134635

(11) J. Kusiński, K. Kowalski, S. Kac, P. Matteazzi, M. Krebs, J. Morgiel, S. Cochet. Microstructure of LaNi5 Base Nanopowders Produced by High Energy Ball Milling. Solid State Phenomena 186 (2012) 124-129. Crossref DOI: https://doi.org/10.4028/www.scientific.net/SSP.186.124

(12) B. Joseph, B. Schiavo, G. D'Alì Staiti, B.R. Sekhar. An experimental investigation on the poor hydrogen sorption properties of nanostructured LaNi5 prepared by ball-milling. Int. J. Hydrogen Energy 36 (2011) 7914-7919. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.01.090

(13) B.A. Talagañis, M.R. Esquivel, G. Meyer. Improvement of as-milled properties of mechanically alloyed LaNi5 and application to hydrogen thermal compression. Int. J. Hydrogen Energy 36 (2011) 11961-11968. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.06.047

(14) A. Bishnoi, S. Pati, P. Sharma. Architectural design of metal hydrides to improve the hydro-gen storage characteristics. J. Power Sources 608 (2024) 234609. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2024.234609

(15) M. Ji, X. Tian, X. Liu, J. Yan, Y. Zhang, R. Guo, W. Wei, Y. Yang. The catalytic oxidation properties for BH4− and electrochemical properties of the Ag-decorated AB5-type hydrogen storage alloy. J. Phys. Chem. Solids 166 (2022) 110709. Crossref DOI: https://doi.org/10.1016/j.jpcs.2022.110709

(16) J. Liu, K. Li, H. Cheng, K. Yan, Y. Wang, Y. Liu, H. Jin, Z. Zheng. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-Al alloys. Int. J. Hydrogen Energy 42 (2017) 24904-24914. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2017.07.213

(17) H. Ahn, J. Lee. Intrinsic degradation of LaNi5 by the temperature induced hydrogen absorption-desorption cycling. Int. J. Hydrogen Energy 16 (1991) 93-99. Crossref DOI: https://doi.org/10.1016/0360-3199(91)90035-H

(18) T. Liu, C. Chen, C. Qin, X. Li. Improved hydrogen storage properties of Mg-based nanocomposite by addition of LaNi5 nanoparticles. Int. J. Hydrogen Energy 39 (2014) 18273-18279. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.03.041

(19) F. Chiesa, M. Rigaud. La réduction de l'oxyde de nickel par l'hydrogène. Can. J. Chem. Eng. 49 (1971) 617-620. Crossref DOI: https://doi.org/10.1002/cjce.5450490511

(20) N. Yasuda, T. Tsuchiya, S. Sasaki, N. Okinaka, T. Akiyama. Self-ignition combustion synthesis of LaNi5 at different hydrogen pressures. Int. J. Hydrogen Energy 36 (2011) 8604-8609. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2011.04.017

(21) L.J. Bannenberg, B. Boshuizen, F.A. Ardy Nugroho, H. Schreuders. Hydrogenation kinetics of metal hydride catalytic layers. ACS Appl. Mater. Interfaces 13 (2021) 52530-52541. Crossref DOI: https://doi.org/10.1021/acsami.1c13240

(22) A.G. Burlakova, S.P. Shilkin. Reaction of lanthanum carbonates with nickel in aqueous medium. Russ. J. Gen. Chem. 73 (2003) 1331-1334. Crossref DOI: https://doi.org/10.1023/B:RUGC.0000015971.66514.8f

(23) W. Liu, K.-F. Aguey-Zinsou. Low temperature synthesis of LaNi5 nanoparticles for hydrogen storage. Int. J. Hydrogen Energy 41 (2016) 1679-1687. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2015.10.128

(24) J. Han, Electrochemical properties of metal hydride electrodes. Doctoral Thesis, 2000. URL

(25) M. Dymek, H. Bala. Hydrogen diffusivity in the massive LaNi5 electrode using voltammetry technique. J. Solid State Electrochem. 18 (2014) 3033-3037. Crossref DOI: https://doi.org/10.1007/s10008-013-2339-1

Downloads

Published

10-04-2025

How to Cite

Malik, S., Zhigalenok, Y., Skakov, M., Miniyazov, A., Mukhamedova, N., & Malchik, F. (2025). Nano- and Micro-Sized LaNi5 Electrochemical Behaviour as Anode Material for Ni-MH Batteries. Eurasian Chemico-Technological Journal, 27(1), 13–20. https://doi.org/10.18321/ectj1652

Issue

Section

Articles