Stability and Liftoff of a N2-in-H2 Jet Flame in a Vitiated Co-flow at Atmospheric Pressure

Authors

  • A. A. North 50B Hesse Hall, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720-1740, USA
  • D. Frederick 50B Hesse Hall, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720-1740, USA
  • J. Y. Chen 50B Hesse Hall, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720-1740, USA
  • R. Dibble 50B Hesse Hall, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720-1740, USA
  • A. Gruber SINTEF Energy Research, 7465 Trondheim, Norway

DOI:

https://doi.org/10.18321/ectj177

Keywords:

hydrogen, jet flames, turbulent combustion, flame propagation, autoignition

Abstract

The stability and liftoff characteristics of a nitrogen (N2) diluted hydrogen (H2) jet flame in a vitiated co-flow are investigated experimentally with particular attention focused on regimes where multiple stabilization mechanisms are active. Information gleaned from this research is instrumental for informing modeling approaches in flame transition situations when both autoignition and flame propagation influence combustion characteristics. Stability regime diagrams which outline the conditions under which the flame is attached, lifted, blown-out, and unsteady are experimentally developed and explored. The lifted regime is further characterized in determining liftoff height dependence on N2 dilution, jet velocity, and co-flow equivalence ratio (or essentially, co-flow temperature). A strong sensitivity of liftoff height to N2 dilution, jet velocity, and co-flow equivalence ratio is observed. Liftoff heights predicted by Kalghatgi’s correlation are unable to capture the effects of N2 dilution on liftoff height for the heated co-flow cases. A uniquely formulated Damköhler number, where the chemical time scale is based on flame propagation rather than autoignition, was therefore developed which acceptably captures the effects of jet velocity, nitrogen dilution and environment temperature on liftoff height. Satisfactory agreement between the correlation results indicate that stabilization is dominated by propagation, and prior studies with similar flames, such as the research of Muñiz and Mungal (1997) indicate that the propagating flame is likely tribrachial.

 

References

[1]. O. Bolland, H. Undrum, Advances in Environmental Research 7 (2003) 901–911.

[2]. P. Chiesa, G. Lozza, L. Mazzocchi, ASME J. of Eng. Gas Turbines and Power 127 (2005) 73–80.

[3]. K.M. Lyons, Prog. Energy Combust. Sci. 33 (2007) 211–231.

[4]. W.M. Pitts, Proc. Combust. Inst. 22 (1988) 809–816.

[5]. L. Vanquickenborne, A. Van Tiggelen, Combust. Flame 10 (1966) 59–69.

[6]. M.J. Dunn, A.R. Masri, R.W. Bilger, R.S. Barlow, G.H. Wang, Proc. Combust. Inst. 32 (2009) 1779–1786.

[7]. N. Peters, F.A. Williams, AIAA 21 (3) (1983) 423–429.

[8]. M.M. Tacke, D. Geyer, E.P. Hassel, J. Janicka, Proc. Combust. Inst. 27 (1998) 1157–1165.

[9]. L. Muniz, M.G. Mungal, Combust. Flame, 111 (1997) 16–31.

[10]. Buckmaster, J. Prog. Energy Combust. Sci. 28 (2002) 435–475.

[11]. R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 20 (2002) 1881–1888.

[12]. R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Combust. Flame 143 (2005) 491–506.

[13]. T. Myhrvold, I.S. Ertesvag, I.R. Gran, R. Cabra, J.Y. Chen, Combust. Sci. Technol. 178 (2006) 1001–1030.

[14]. R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, Combust. Theory Model. 11 (3) (2007) 351–376.

[15]. C.N. Markides, E. Mastorakos, Proc. Combust. Inst. 30 (2005) 883–891.

[16]. G.T. Kalghatgi, Combust. Sci. Technol. 41 (1984) 17–29.

[17]. N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, U.K., 2000, 237-261.

[18]. R.R. Cao, S.B. Pope, A.R. Masri, Combust. Flame 142 (2005) 438–453.

[19]. S. Kumar, P.J. Paul, H.S. Mukunda, Combust. Sci. Technol. 179 (2007) 2219–2253.

[20]. R.L. Gordon, S.H. Stårner, A.R. Masri, R.W. Bilger, Further Characterisation of Lifted Hydrogen and Methane Flames Issuing into a Vitiated Co-flow, 5th Asia-Pacific Conference on Combustion, Asia-Pacific Regional Affiliate of the Combustion Institute, Adelaide, Australia, 2005.

[21]. R. Gordon, A. Masri, E. Mastorakos, Combust. Flame 155 (2008) 181–195.

[22]. R. Gordon, A. Masri, S. Pope, G. Goldin, Combust. Flame 151 (2007), 495–511.

[23]. R. Gordon, Ph.D. thesis, The University of Sydney, 2007.

[24]. R. Cabra, Turbulent Jet Flames in a Vitiated Co-flow, Report No. NASA/CR-2004-212887 E-14301, NASA Glenn Research Center, 2004.

[25]. R. Cabra et al, Turbulent Jet Flames into a Vitiated Coflow. PhD Thesis, UC – Berkeley 2005.

[26]. M. Karbassi, I. Wierzba, J. Energy Resource Technol. 120 (1997) 167–171.

[27]. R. Kee, J. Grcar, M. Smooke, J. Miller, SAND85-8240. (1985).

[28]. P.R. Medwell, B.B. Dally, Energy and Fuels. 26 (2012) 5519–5527.

[29]. J.Y. Chen, W.C. Chang, Combust. Sci. Technol. 133 (1998) 343–375.

[30]. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 36 (2004) 566–575.

[31]. J. Ströhle, T. Myhrvold, Int. J. Hydrogen Energy 32 (2007) 125–135.

[32]. K. Döbbeling, J. Hellat, H. Koch, ASME J. Eng. Gas Turbines and Power 129 (2007) 2–12.

[33]. P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Wiley-Interscience, Hoboken, New Jersey, U.S., 2007 402.

[34]. J.Y. Chen, W. Kollmann, Proc. Combust. Inst. 22 (1989) 645–653.

[35]. S. Muppala, J.X. Wen, N.K. Aluri, F. Dinkelacker, Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation, 2nd International Conference on Hydrogen Safety, EU NoE
HySafe, San Sebastian, ES, 2007.

[36]. B. Johannessen. Studies of Combustion in Berkeley’s Vitiated Co-flow Burner (VCB), Master’s Thesis No. EPT-M-2011-16, Norwegian University of Science and Technology, 2011.

[37]. Y. Wu, Y. Lu, I.S. Al-Rahbi, G.T. Kalghatgi, Int. J. Hydrogen Energy 34 (14) (2009) 5940–5945.

[38]. R.S. Brokaw, Viscosity of Gas Mixtures. NASA Technical Note, NASA TN D-4496 (1968).

[39]. Montgomery, C.J., Kaplan, C.R. Oran, E.S. Proc. Combust. Inst. 27 (1998) 1175–1182.

[40]. N. Peters, J. Fluid Mech. 384 (1999) 107-132.

[41]. G.Z. Damkӧhler, Electrochem. 46 (1940) 601–626.

[42]. G.R. Ruetsch, L. Vervisch, A. Linan, Phys. Fluids 7 (1995) 1447–1454.

[43]. G.T. Kalghatgi, Combust. Sci. Technol. 26 (1981) 233–239.

[44]. A.D. Birch, D.R. Brown, M.G. Dodson, J. Fluid Mech. 88 (1978) 431–449.

[45]. W.M. Pitts, Combust. Flame 76 (1989) 197–212.

Downloads

Published

2014-09-30

How to Cite

A. North, A., Frederick, D., Chen, J. Y., Dibble, R., & Gruber, A. (2014). Stability and Liftoff of a N2-in-H2 Jet Flame in a Vitiated Co-flow at Atmospheric Pressure. Eurasian Chemico-Technological Journal, 16(2-3), 129–140. https://doi.org/10.18321/ectj177

Issue

Section

Articles