The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum
DOI:
https://doi.org/10.18321/ectj395Keywords:
phosphogypsum, gas purification, biogas, sulfide removal, elemental sulfurAbstract
This paper focuses on the study the possibility of phosphogypsum utilization in the biotechnological processes for hydrogen sulfide removal from biogas. The optimal parameters of the process of granulation dihydrate phosphogypsum were determined. The biochemical characteristics of granular carrier based on phosphogypsum was studied. The efficiency of the gas cleaning under immobilization of the thiobacillus on the surface support medium was analyzed. The main parameters of the gas cleaning process were determined. The degree of H2S removal from a gas stream was 98.22% at pH = 5.0 and optimum empty bed residence time of 10 h. The possibility of the phosphogypsum using as a new type of mineral support medium for the associations of sulfur-oxidizing microorganisms developing was determined in the process of biological gases purification from sulfur compounds. It was the first time both theoretically and experimentally proved that the mineral support on the basis of phosphogypsum has a sufficient micro and macro elements that necessary for the thiobacteria development. Thus it is eliminating the need to supply additional sources of feeding organisms to biofilter. The gas purification biotechnology with support medium using on the basis of phosphogypsum was developed. This technological solution which allows providing the high quality of gas stream purification with a high content of sulfur compounds, particularly hydrogen sulfide (more than 10% of the gas total volume).
References
[2]. M. Ramirez, J.M. Gómez, D. Cantero. Bioresour. Technol. 100 (21) (2009) 4989–4995.
[3]. P. Ravichandra, G. Mugeraya, A. Gangagni Rao, M. Ramakrishna, and A. Jetty. J. Environ. Biol. 28 (4) (2007) 819–823.
[4]. THIOPAQ Bio-Desulfurization Process. Cameron. Printed in USA, 07/10 TC9814-047 (2010), 2 p.
[5]. A.J. Janssen, S.C. Ma, P. Lens, G. Lettinga. Biotechnol. Bioeng. 53 (1) (1997) 32–40.
[6]. Environmental Technology Verification report. Katec, Inc. Aerosolv®. California Environmental Protection Agency Department of Toxic Substances Control Office of Pollution Prevention and Technology Development Sacramento, California (1999), 54 pp.
[7]. P.H. Nielsen. Water Sci. Technol. 17 (2–3) (1984) 167–181.
[8]. Carrier Byoung-Gi Park, Won Sik Shin, Jong Shik Chung. Environ. Eng. Res. 13 (1) (2008) 19–27.
[9]. A.B. Parreira, Jr, A.R.K. Kobayashi, O.B. Silvestre. J. Environ. Eng. 129 (2003) 956–960.
[10]. D.A. Mays, J.J. Mortvedt. J. Environ. Qual. 15 (1) (1986) 78–81.
[11]. I.S. Alcordo, and J.E. Rechcigl. “Phosphogypsum and other by-products gypsums”. In Soil and Amendments and Environmental Quality, J.E. Rechcigl (ed.). pp. 365–425. Boca Raton, FL: CRC/Lewis Publishers. 1995.
[12]. J. Murphy, J.P. Riley. Anal. Chim. Acta 27 (1962) 31–36.
[13]. A.I. Akın, S. Yesim. Cem. Concr. Res. 34 (4) (2004) 677–680.
[14]. N. Degirmenci, A. Okucu, A. Turabi. Building and Environment 42 (9) (2007) 3393–3398.
[15]. C. Papastefanou, S. Stoulos, A. Ioannidou, M. Manolopoulou. J. Environ. Radioact. 89 (2) (2006) 188–198.
[16]. L. Plyatsuk, E. Chernish. J. of Solid Waste Technology and Management 40 (1) (2014) 10–23. http://dx.doi.org/10.5276/JSWTM.2014.10
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.