Adsorption of Benzene, Toluene, Ethylbenzene and o-Xylene by Carbon-Based Adsorbents

Authors

  • N. Baimatova Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • M. Derbissalin Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • A. Kabulov Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • B. Kenessov Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj433

Keywords:

BTEX air purification adsorption shungite carbon-based adsorbents

Abstract

This study explored the possibility of applying different carbon-based adsorbents for removal of benzene, toluene, ethylbenzene and o-xylene (BTEX) from indoor air in static and dynamic modes. To determine BTEX removal effectiveness, the approach based on solid-phase microextraction (SPME) in combination with gas chromatography – mass spectrometry (GC-MS) was used. In static mode, removal effectiveness of BTEX from indoor air using different carbon-based adsorbents (shungite, walnut shell, saxaul, apricot pits, activated charcoal, Tenax, carbon black) varied from 80% to 100%. Optimal preparation conditions for shungite-based
adsorbent are no activation and addition of NaOH at 1:0.8 ratio. Shungite-based adsorbent was not able to remove BTEX from polluted indoor air at the flow rate 300 mL/min corresponding to the linear flow rate 25 cm/s, a minimum value for most commercial air purification systems. At the flow rate 75 mL/min (6.25 cm/s), a saturation time of shungite-based adsorbent made up 368 min for benzene and 437 min for toluene. At this flow rate, BTEX adsorption capacities of the shungitebased adsorbent were 0.3, 2.1, 0.2 and 0.3 µg/g, respectively. Compared to shungite, activated charcoal allowed the complete removal of BTEX at both flow rates in the whole studied time frame. Thus, shungite-based adsorbents are not recommended for BTEX removal from air because of much greater efficiencies of classic activated charcoal adsorbents. Applied methodology based on SPME-GC-MS allowed simple, fast and inexpensive collection of data and can be recommended as the analytical tool for developing new adsorbents and systems for air purification.

References

[1]. T.T.N. Lan, P.A. Minh, J. Environ. Sci. (China) 25 (2013) 348–356.

[2]. M. Caselli, G. de Gennaro, A. Marzocca, L. Trizio, M. Tutino, Chemosphere 81 (2010) 306–311.

[3]. EPA (2010) An Introduction to Indoor Air Quality (IAQ) U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.

[4]. Wark K., Warner C. (1977) Air pollution. Its origin and control, 3rd. California: Addison Wesley L.

[5]. A. Gelencsér, G. Kiss, J. Hlavay, T.L. Hafkenscheid, R.J. Peters, E.W. De Leer, Talanta 41 (1994) 1095–1100.

[6]. D. Helmig, C. Thompson, Environ. Sci. Technol. 48 (2014) 4707–4715.

[7]. J.E.C. Lerner, T. Kohajda, Environ. Sci. Pollut. Res. Int. 21 (2014) 9676–9688.

[8]. L. Li, H. Li, J. Environ. Sci. 26 (2014) 214–223.

[9]. N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J. Expo Anal. Environ. Epidemiol. 11 (2001) 231–252.

[10]. A.P. Jones, Atmos Environ. 33 (1999) 4535–4564.

[11]. L.A. Wallace, Toxicol Ind. Heal 7 (1991) 203–208.

[12]. R. Niemela, H. Vainio, Scand J. Work Environ. Heal 7 (1981) 95–100.

[13]. S.A.A.W. Al-Sulaiman. Sick building syndrome: in public buildings and workplace, ISBN 9783642179181 2011, p. 558.

[14]. E. Uhde. Part one measuring organic indoor pollutants.In: T. Salthammer, E. Uhde (eds.) Org. Indoor Air Pollut., 2nd ed. WILEY-VCH Verlag GmbH & Co, Weinheim, 2009, p. 3–18.

[15]. D. Das, V. Gaur, N. Verma, Carbon 42 (2004) 2949–2962.

[16]. R.T. Liu. Proc IAQ’92 Atlanta ASHRAE 257–261(1992).

[17]. Clean Air Technology EPA, Catc Tech Bull EPA456/F-99-004(1999).

[18]. C.H. Ao, S.C. Lee, J. Photochem. Photobiol. A Chem. 161 (2004) 131–140.

[19]. C.H. Ao, S.C. Lee, Appl. Catal. B Environ. 44 (2003) 191–205.

[20]. W. Jo, H. Kang, J. Environ. Sci. 21 (2012) 1321–1331.

[21]. S.B. Yang, H.H. Chun, R.J. Tayade, W.K. Jo, J. Air Waste Manage Assoc 65 (2014) 365–373.

[22]. W.K. Jo, Environ Technol 34 (2013) 1175–1181.

[23]. C.H. Ao, S.C. Lee, Chem. Eng. Sci. 60 (2005) 103–109.

[24]. M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn, W.J. Fisk, Build. Environ. 47 (2012) 357–367.

[25]. K.N. Gupta, N.J. Rao, G.K. Agarwal, Indian. J.Chem. Technol. 20 (2013) 26–32.

[26]. M. Belhachemi, R.V.R.A. Rios, F. Addoun, J. Silvestre-Albero, A. Sepulveda-Escribano, F.Rodriguez-Reinoso, J. Anal. Appl. Pyrolysis. 86 (2009) 168–172.

[27]. B.S. Girgis, E. Smith, M.M. Louis, A.N. ElHendawy, J. Anal. Appl. Pyrolysis 86 (2009) 180–184.

[28]. T. Uysal, G. Duman, Y. Onal, I. Yasa, J. Yanik, J. Anal. Appl. Pyrolysis. 108 (2014) 47–55.

[29]. D. Mohan, A. Sarswat, V.K. Singh, M. AlexandreFranco, C.U. Pittman, Chem. Eng. J. 172 (2011) 1111–1125.

[30]. A.S.D.C. Lopes, S.M.L. Carvalho, D.D.S.B. Brasil, R.D.A. Mendes, M.O. Lima, Am. J. Anal. Chem. 6 (2015) 528–538.

[31]. M.K.B. Gratuito, T. Panyathanmaporn, R.A. Chumnanklang, N. Sirinuntawittaya, A. Dutta, Bioresour. Technol. 99 (2008) 4887–4895.

[32]. A. Kabulov, Int. J. Chem. 13 (2) (2015) 747–758.

[33]. A.T. Kabulov. Producing technology of composite carbon-based materials based on carbon raw materials of Kazakhstan. PhD Thesis. Almaty (2015).

[34]. K. Dossumov, M. Nauryzbayev, D. Churina, S. Efremov, B. Kenessov, M. Telbayeva, J. Energy Power Eng. 9 (2015) 259–264.

[35]. F. Werres, F. Michel, B. Shirey, Y. Chen, Extech., Chania, 2014, p. 23.

[36]. A. Hussam, M. Alauddin, A.H. Khan, D. Chowdhury, H. Bibi, M. Bhattacharjee, J. Environ. Sci. Heal Part A 37 (2002) 1223–1239.

[37]. J. Pawliszyn, Solid phase microextraction ‒ theory and practice. 1st ed. WILEY-VCH Verlag GmbH & Co, New York.,1997, p. 245.

[38]. J. Pawliszyn, Applications of solid phase microextraction, 1st ed. The Royal Society of Chemistry, Hertfordshire, 1999, p. 53.

[39]. SNiP 2.04.05-91, Moscow, Russia, 1999.

[40]. W. Jo, H. Chun, Aerosol Air Qual. Res. 347–354(2014).

[41]. J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao, Atmos. Environ. 43 (2009) 2229–2246.

Downloads

Published

2016-05-25

How to Cite

Baimatova, N., Derbissalin, M., Kabulov, A., & Kenessov, B. (2016). Adsorption of Benzene, Toluene, Ethylbenzene and o-Xylene by Carbon-Based Adsorbents. Eurasian Chemico-Technological Journal, 18(2), 123–131. https://doi.org/10.18321/ectj433

Issue

Section

Articles