Aggregation of Aqueous Kaolin Suspensions in the Presence of Cationic Polyelectrolytes, Anionic Polyelectrolytes and their Mixtures
DOI:
https://doi.org/10.18321/ectj432Abstract
The influence of anionic, cationic synthetic polyelectrolytes and their mixtures on the aggregation of kaolin hydrosuspension has been studied by means of spectrophotometry, electrophoresis and dynamic light scattering (DLS). An enhancement of the flocculating property of the cationic polyelectrolyte FO 4650 in accordance with its consumption increases from 0.77 mg/g to 7.7 mg/g has been found. At these conditions the relative size of floccules (R) increases from 1.0 to 13.0. The increase of the flocculating property accordingly to the increasing charge of anionic polyelectrolyte is observed in mixtures of cationic and anionic polyelectrolytes. The time dependences of R in presence of the weakly charged cationic polyelectrolyte mixtures reach a plateau region. This can be associated with the formation of electrostatic contacts between the solid surface and the polymer mixtures, as well as with stabilizing equilibrium conformation of macromolecules. It has been found that mixtures of oppositely charged polyelectrolytes lead to more efficient aggregation of particles than individual polyelectrolytes. This process is enhanced by the introduction primarily of the cationic polyelectrolyte and then the anionic one (R = 6‒10). Use of the preformulated mixtures of polymers leads to the marked increase in degree of particle aggregation (R = 12). The reason is an interaction of kaolin particles with inter-polymer complex formed by electrostatic attraction of oppositely charged polyelectrolytes.
References
Developments in Clay Science, Elsevier, 2012, P. 47‒75.
[2]. A.A. Baran. Polymersoderjashie dispersnie systemi [Polymercontaining disperse Systems], Kiev, Naukowa, Dumka, 1988, P. 180 (in Russian).
[3]. J.G. Gregory, Particles in Water. Taylor and Francis Group, 2006, P. 180.
[4]. B.V. Derjagin Teoria ustoichivosti kolloidov i tonkich plenok [Theory stability of colloids and thin films] M.: Nauka, 1986. (in Russian).
[5]. M. Galdera Villalobos, A.A. Peláez Cid, Ana M. Herrera González, J. Environ. Manage. 177 (2016) 65‒73.
[6]. S. Schwarz, S. Montserrat Ponce-Vargas, A. Licea-Claverie, C. Steinbach, Colloids Surf. A 413 (2012) 7‒12.
[7]. J. Gregory, S. Barany. Adv, Colloid Interface Sci. 169 (1) (2011) 1‒12.
[8]. B. Tassinari, S. Doherty, I.W. Marison, Water Res. 47 (14) (2013) 4957‒4965.
[9]. T. Nharingo, M. Moyo, J. Environ. Manage. 166 (2016) 55‒72.
[10]. Sh. Muzdybayeva, K. Musabekov, N. Muzdybayeva, G. Askarova, N. Nurbaeva, R. Taubaeva, European Journal of Sustainable Development 3 (3) (2014) 195‒200.
[11]. R. Taubaeva, R. Meszaros, K.B. Musabekov, S. Barany, Colloid J. 1 (77) (2015) 91‒98.
[12]. Sh. Barany, R. Mesarosh, R. Taubaeva, K. Musabekov. Colloid J. 6 (77) (2015) 692‒695.
[13]. S. Barany, R. Mesaros, I. Kozakova, J. Skvarla, Colloid J. 3 (71) (2009) 285‒292.
[14]. J Gregory, (ed.). and D.W. Nelson, In Solid-Liquid Separation, Ellis Horwood, 1984, P. 172.
[15]. J. Gregory. J. Colloid Intrface Sci. 2 (105) (1985) 357‒371.
[16]. J. Lyklema, L. Deschenes. Adv. Colloid Interface Sci. 1 (168) (2011) 135‒148.
[17]. G.J. Fleer, J.M.H.M. Scheujtens, Coagulation and flocculation. Ed. By Dobias B. New York: Marcel Dekker, 1993. P.1.
[18]. M. Schonhoff, Curr. Opin. Solid State Mater. Sci. 1 (8) (2003) 85‒96.
[19]. R.E. Grim, B.A. Frank-Kameneckij (ed., trans. in eng.) Clay mineralogy. Foreign Literature, Moscow, 1959.
[20]. G.J. Fleer, J.M.H.M. Scheujtens, M.A. СohenStuart, B. Vincent, and T. Cosgrove, Polymers at Interfaces, Chapman Hall. London-Glasgow-New York, 1993.
[21]. E. Tombácz and M. Szekeres, Appl. Clay Sci. 1 (27) (2004) 75‒94.
[22]. E.A. Bekturov, L.A. Bimendina, Interpolimernyie kompleksyi [Interpolymer complex]. Nauka KazSSR, Almaty, 1977. P. 264 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.