Experimental and Numerical Analysis of the Influence of Thermal Control on Adsorption and Desorption Processes in Adsorbed Natural Gas Storage
DOI:
https://doi.org/10.18321/ectj429Abstract
Natural gas,the most environmentally friendly fossil fuel, can be stored in a vessel based on adsorption technology, designed for energy efficient storage of natural gas at relatively medium pressures (3‒4 MPa).The application of adsorption technology will reduce the energy consumption for gas compressing or gas liquefying compared to compressed and liquefied natural gas storage methods,also, it will lead to cost savings in compressing and cooling equipment. While charging/discharging of adsorbed natural gas (ANG) vessel, the latent heat of adsorption counteracts to adsorption/desorption process, as the result, thermal effect causes a reduction of vessel capacity. Therefore,the influence of thermal control on adsorption and desorption processes in adsorbed natural gas vessel was studied experimentally and numerically in this paper. The study focusing on the three dimensional heat exchange is important in order to understand the heat transfer phenomena and analyze influence of thermal control comprehensively. The temperature and adsorption uptake profiles in the vessel were demonstrated in the numerical simulation. Comparison of experimental and simulation results showed that deviation between experimental and numerical results was 0.1%
References
[2]. J.C. Santos, J.M. Gurgel, F. Marcondes, Appl. Therm. Eng. 90 (5) (2015) 258‒265.
[3]. M. Beckner, A. Dailly, Appl. Energ. 149 (2015) 69‒74.
[4]. A. Saez, M. Toledo, Appl. Therm. Eng. 29 (13) (2009) 2617-2623.
[5]. S.C. Hirata, P. Couto, L.G. Lara, R.M. Cotta, Int. J. Therm. Sci. 48(6) (2009) 1176‒1183.
[6]. R. Basumatary, P. Dutta, M. Prasad, K. Srinivasan, Carbon 43 (3) (2005) 541‒549.
[7]. P.K. Sahoo, B.P. Prajwal, S. K. Dasetty, M. John, B.L. Newalkar, N.V. Choudary, K.G. Ayappa, Appl. Energ. 119 (2014) 190‒203.
[8]. K.A. Rahman, W.S. Loh, H. Yanagi, A. Chakraborty, B.B. Saha, W.G. Chun, K.C. Ng, J. Chem. Eng. Data 55 (11) (2010) 4961–4967.
[9]. W.S. Loh, K.A. Rahman, A. Chakraborty, B.B. Saha, Y.S. Choo, B.C. Khoo, K.C. Ng, J. Chem. Eng. Data 55 (8) (2010) 2840–2847.
[10]. K.A. Rahman, W.S. Loh, A. Chakraborty, B.B. Saha, W.G. Chun, K.C. Ng, Appl. Therm. Eng. 31 (10) (2011) 1630–1639.
[11]. Y. Sun, C. Liu, W. Su, Y. Zhou, L. Zhou, Adsorption 15 (2) (2009) 133–137.
[12]. X.D. Yang, Q.R. Zheng, A.Z. Gu, X.S. Lu, Appl. Therm. Eng. 25 (4) (2005) 591–601.
[13]. S.H. Yeon, S. Osswald, Y. Gogots, J.P. Singer, J.M. Simmons, J.E. Fischer, M.A. Lillo-Ródenas, A. Linares-Solano, J. Power Sources 191 (2) (2009) 560–567.
[14]. R.B. Rios, M. Bastos-Neto, M.R. Amora Jr., A.E.B. Torres, D.C.S. Azevedo, C.L. Cavalcante Jr., Fuel 90 (1) (2011) 113–119.
[15]. F.N. Ridha, R.M. Yunus, M. Rashid, A.F. Ismail, Appl. Therm. Eng. 27 (1) (2007) 55–62.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.