Micro and Nano Scale Phenomena of Aluminum Agglomeration During Solid Propellant Combustion
DOI:
https://doi.org/10.18321/ectj422Keywords:
aluminized propellants, agglomeration, nano-aluminum, nickel coatingAbstract
Combustion of aluminized solid propellants exhibits phenomena associated with accumulation, agglomeration, ignition, and combustion of micro and nano-size aluminum particles. In general, agglomeration is an undesirable phenomenon, as it turns small particles into relatively large agglomerates, each containing many original particles, resulting in long combustion times which may lead to incomplete reaction, reduced jet momentum, and enhanced slag formation which adds parasite mass and may damage the motor insulation. This article presents a physical mechanism explaining the agglomeration process, revealing that small particles tend to agglomerate more than large particles. In addition, it suggests ways to reduce agglomeration of the aluminum particles via nano-coatings generating reactive heating and promoting ignition.
References
[2]. A. Gany, L.H. Caveny, and M. Summerfi eld, AIAA Journal 16 (7) (1978) 736–739.
[3]. E.W. Price, “Combustion of Metallized Propellants”, in K.K. Kuo and M. Summerfi eld, Eds., Fundamentals of Solid Propellant Combustion, Progress is Astronautics and Aeronautics, Vol. 90, AIAA, 1984, pp. 479–513.
[4]. M.W. Beckstead, “A Summery of Aluminum Combustion”, Presented at the RTO/VKI Special Course “Internal Aerodynamics in Solid Rocket Propulsion”, Published in RTO-EN-023, 2002.
[5]. S. Boraas, Journal of Spacecraft and Rockets 21 (1) (1984) 47–54.
[6]. M. Salita, J. Propul. Power 11 (1) (1995) 10–23.
[7]. M.W. Beckstead, “An Overview of Aluminum Agglomeration Modeling”, 50th Israel Annual Conference on Aerospace Sciences, Tel Aviv, 2010.
[8]. A. Gany, and L.H. Caveny, Proc. 17th Symp. (Intern.) Combust., Combust. Inst. 1978, pp. 1453–1461.
[9]. T. Liu, J. Propul. Power 21 (5) (2005) 797–806.
[10]. M.W. Beckstead, “A Model for Solid Propellant Combustion”, 14th JANNAF Combustion Meeting, CPIA Pub. 292, Vol. 1, 1977, pp. 281–306.
[11]. N.S. Cohen, AIAA Journal 21 (5) (1983) 720–725.
[12]. G.M. Knott, T.L. Jackson, and J. Buckmaster, AIAA Journal 39 (4) (2001) 678–686.
[13]. T.L. Jackson, F. Najjar, and J. Buckmaster, J. Propul. Power 21 (5) (2005) 925–936.
[14]. X. Wang, T.L. Jackson, and J. Buckmaster, Proc. Combust. Inst. 31 (2007) 2055–2062.
[15]. A. Dokhan, E.W. Price, J.M. Seitzman, and R.K. Sigman, Proc. Combust. Inst. 29 (2002) 2939–2945.
[16]. M.M. Munch, C.L. Yeh, K.K. Kuo, “Propellant Burning rate Enhancement and Thermal Behavior of Ultra-fi ne Aluminum Powders (Alex)”, Energetic Materials: Production, Processing and Characterization, Proc. 29th Int. Annual Conf. of ICT, 30-1-15, 1988.
[17]. V.N. Simonenko, V.E. Zarko, “Comparative Study of the Combustion Behavior of Fine Aluminum”,
Energetic Materials, Proc. 30th Int. Annual Conf. of ICT, paper 30, 1999.
[18]. O.G. Glotov, V.E. Zarko, M.W. Beckstead, “Agglomerate and Oxide Particles Generated in Combustion of Alex Containing Solid Propellants”, Energetic Materials. Analysis, Diagnostics, and Testing, Proc. 31st Int. Annual Conf. of ICT, paper 30, 2000.
[19]. L.T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A.B. Vorozhtsov, V.S. Sedoi, and V.A. Babuk, “Burning of Nano-Aluminized Composite Rocket Propellants”, Combustion, Explosion, and Shock Waves 41 (6) (2005) 680–692.
[20]. L. Galfetti, L.T. De Luca, F. Severini, G. Colombo, L. Meda, G. Marra, Aerospace Science and Technology 11 (2007) 26–32.
[21]. V. Rosenband, and A. Gany. International Journal of Energetic Materials and Chemical Propulsion 6
(2) (2007) 143–152.
[22]. V. Rosenband, and A. Gany, International Journal of Energetic Materials and Chemical Propulsion 8
(4) (2009) 291–307.
[23]. V. Rosenband, and A. Gany. International Journal of Energetic Materials and Chemical Propulsion 10
(1) (2011) 19–32.
[24]. E. Shafi rovich, P.E. Bocanegra, C. Chanveau, I. Gokalp, U. Goldshleger, V. Rosenband, and A. Gany, Proc. Combust. Inst. 30 (2005) 2055–2062.
[25]. T.A. Andrzejak, E. Shafi rovich, and A. Varma, Combust. Flame 150 (1-2) (2007) 60–70.
[26]. T.A. Andrzejak, E. Shafi rovich, and A. Varma, J. Propul. Power 24 (4) (2008) 805–813.
[27]. A. Hahma, A. Gany, and K. Palovuori, Combust. Flame 145 (3) (2006) 464–480.
[28]. Y. Yavor, V. Rosenband, and A. Gany, International Journal of Energetic Materials and Chemical Propulsion 9 (6) (2010) 477–492.
[29]. Y. Yavor, and A. Gany, “Effect of Nickel Coating on Aluminum Combustion and Agglomeration in Solid Propellants”, AIAA Paper 2008-5255, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 2008.
[30]. Y. Yavor, A. Gany, and M.W. Beckstead, Propellants, Explos., Pyrotech. 39 (2014) 108–116.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.