Role of Fractals in Perovskite Solar Cells
DOI:
https://doi.org/10.18321/ectj471Keywords:
solar cells, perovskite, interface, fractalAbstract
The interface engineering plays important role in fabrication of the tandem and perovskite based solar cells. Recent experiments show that the interface effects caused by the coupling of the electron bands and the pairing of geometry of contacting surfaces. In particular, it has been experimentally revealed that the transition from planar to the rough interface improves many photoelectric parameters of the device. It means that the value of the fractal dimension of the interface may be key factor in device performance. It is possible to formulate two problems: firstly, the understanding on simple models why the electrical properties at fractal interfaces are improved, and, secondly, to discuss one of the most promising approaches in modern electronics, namely technology of radiation applications in the creation of rough interfaces. Thirdly, the problem of photodegradation is analyzed in detail in the structures containing the fractal interfaces. On the basis of the constructed models, it was found: i) increase of roughness (fractal) of interface structure can enhance the role of total internal light reflection effect, thereby increasing the effective light path, and therefore, the number of generated e-h-pairs; ii) the curvature of the surface leads to the shift of Tamm levels both to the borders of allowed bands, and to the middle of the band gap; it opens the way of the control of carrier recombination on the interface; iii) surface Tamm orbitals interact differently each with other on the convex and concave areas; it leads to the different probability of defect formation and, consequently, reduces the fractal interface, inhibiting the effect of increasing of the photocurrent associated with the fractal interface (new channel of photodegradation).
References
(1). G. Giorgi, and K. Yamashita, J. Mater. Chem. A. Crossref
(2). W.-J. Yin, J.H. Yang, J. Kang, et al. J. Mater. Chem. A. Crossref
(3). N.R. Ashurov, B.L. Oksengendler, S.Sh. Rashi-dova, A.A. Zakhidov, Appl. Solar Energy 52 (1) (2016) 5–15. Crossref
(4). T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale and Y.M. Lam, J. Mater. Chem. A 3 (2015) 8943–8969. Crossref
(5). Ch. Liu, Z. Qiu, W. Meng, J. Chen, J. Qi, Ch. Dong, M. Wang, Nano Energy 12 (2015) 59‒68. Crossref
(6). B.L. Oksengendler, O.B. Ismailova, M.B. Marasulov, I.Z. Urolov, Appl. Sol. Energy 50 (2014) 255‒259. Crossref
(7). M.H. Du, J. Appl. Phys. 108:053506 (2010). Crossref
(8). I. Shkrob, T. Marin, J. Phys. Chem, Lett. 5 (2014) 1066–1071. Crossref
(9). J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14(5) (2014) 2584–2590. Crossref
(10). T. Sum, N. Mathews, Energy and Environ. Sci. 7 (2014) 2518–2534. Crossref
(11). M. Graetzel, R.A. Janssen, D.B. Mitzi and E.H. Sargent, Nature 488 (2012) 304–312. Crossref
(12). J. Müller, B. Rech, J. Springer, M. Vanecek, Solar Energy 70 (2004) 917–930. Crossref
(13). L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu and X. Hou, Nanoscale 6 (2014) 8171–8176. Crossref
(14). B.L. Oksengendler, N.R. Ashurov, S.E. Maksimov, I.Z. Uralov, S.Sh. Rashidova. Nanosystems: physics, chemistry, mathematics. (2017 (accepted). Crossref
(15). B.L. Oksengendler, N.N. Turaeva, Doklady Physics 55 (2010) 477–479. Crossref
(16). T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Phys. Rev. A, 33 (1986) 1141−1151. Crossref
(17). E. Parilis, L. Kishinevskiy, N. Turaev, et al. Atomic Collisions on Solid Surfaces. North. Holl. Amsterdam, London, New York, Tokyo. Elsevier Sci. Publ. BV. 1993.
(18). S.E. Maksimov, B.L. Oksengendler, N.Yu. Turaev, J. Surf. Invest. 7 (2) (2013) 333–338. Crossref
(19). Feder, E. Fractals. Plenum Press. New York. 1988. 262 p.
(20). P.G. Shewmon. Diffusion in solids. McGraw-Hill Book Com., NY, San Francisco, Toronto, London, 1961. 189 p.
(21). R.P. Yadav, M. Kumar, A.K. Mittal1 and A.C. Pandey Chaos 25:083115 (2015). Crossref
(22). B.L. Oksengendler, S.E. Maksimov, M.B. Marasulov, Nanosystems: physics, chemistry, mathematics 6 (6) (2015) 825–832. Crossref
(23). I.E. Tamm, Collection of scientific works in two volumes. Moscow: Nauka,1975, V.1 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.