Role of Fractals in Perovskite Solar Cells

Authors

  • B. L. Oksengendler Polymer Chemistry and Physics Research Center at The National University of Uzbekistan named after Mirzo Ulugbek; Uzbekistan, Tashkent, 100128, A. Kadyri Str., 7b
  • N. R. Ashurov Polymer Chemistry and Physics Research Center at The National University of Uzbekistan named after Mirzo Ulugbek; Uzbekistan, Tashkent, 100128, A. Kadyri Str., 7b
  • S. E. Maksimov Turin Polytechnic University in Tashkent; Uzbekistan, Tashkent, 100095, Kichik Xalqa Yo'li Str., 17
  • O. V. Karpova Turin Polytechnic University in Tashkent; Uzbekistan, Tashkent, 100095, Kichik Xalqa Yo'li Str., 17
  • S. Sh. Rashidova Polymer Chemistry and Physics Research Center at The National University of Uzbekistan named after Mirzo Ulugbek; Uzbekistan, Tashkent, 100128, A. Kadyri Str., 7b

DOI:

https://doi.org/10.18321/ectj471

Keywords:

solar cells, perovskite, interface, fractal

Abstract

The interface engineering plays important role in fabrication of the tandem and perovskite based solar cells. Recent experiments show that the interface effects caused by the coupling of the electron bands and the pairing of geometry of contacting surfaces. In particular, it has been experimentally revealed that the transition from planar to the rough interface improves many photoelectric parameters of the device. It means that the value of the fractal dimension of the interface may be key factor in device performance. It is possible to formulate two problems: firstly, the understanding on simple models why the electrical properties at fractal interfaces are improved, and, secondly, to discuss one of the most promising approaches in modern electronics, namely technology of radiation applications in the creation of rough interfaces. Thirdly, the problem of photodegradation is analyzed in detail in the structures containing the fractal interfaces. On the basis of the constructed models, it was found: i) increase of roughness (fractal) of interface structure can enhance the role of total internal light reflection effect, thereby increasing the effective light path, and therefore, the number of generated e-h-pairs; ii) the curvature of the surface leads to the shift of Tamm levels both to the borders of allowed bands, and to the middle of the band gap; it opens the way of the control of carrier recombination on the interface; iii) surface Tamm orbitals interact differently each with other on the convex and concave areas; it leads to the different probability of defect formation and, consequently, reduces the fractal interface, inhibiting the effect of increasing of the photocurrent associated with the fractal interface (new channel of photodegradation).

References

(1). G. Giorgi, and K. Yamashita, J. Mater. Chem. A. Crossref

(2). W.-J. Yin, J.H. Yang, J. Kang, et al. J. Mater. Chem. A. Crossref

(3). N.R. Ashurov, B.L. Oksengendler, S.Sh. Rashi-dova, A.A. Zakhidov, Appl. Solar Energy 52 (1) (2016) 5–15. Crossref

(4). T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale and Y.M. Lam, J. Mater. Chem. A 3 (2015) 8943–8969. Crossref

(5). Ch. Liu, Z. Qiu, W. Meng, J. Chen, J. Qi, Ch. Dong, M. Wang, Nano Energy 12 (2015) 59‒68. Crossref

(6). B.L. Oksengendler, O.B. Ismailova, M.B. Marasulov, I.Z. Urolov, Appl. Sol. Energy 50 (2014) 255‒259. Crossref

(7). M.H. Du, J. Appl. Phys. 108:053506 (2010). Crossref

(8). I. Shkrob, T. Marin, J. Phys. Chem, Lett. 5 (2014) 1066–1071. Crossref

(9). J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14(5) (2014) 2584–2590. Crossref

(10). T. Sum, N. Mathews, Energy and Environ. Sci. 7 (2014) 2518–2534. Crossref

(11). M. Graetzel, R.A. Janssen, D.B. Mitzi and E.H. Sargent, Nature 488 (2012) 304–312. Crossref

(12). J. Müller, B. Rech, J. Springer, M. Vanecek, Solar Energy 70 (2004) 917–930. Crossref

(13). L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu and X. Hou, Nanoscale 6 (2014) 8171–8176. Crossref

(14). B.L. Oksengendler, N.R. Ashurov, S.E. Maksimov, I.Z. Uralov, S.Sh. Rashidova. Nanosystems: physics, chemistry, mathematics. (2017 (accepted). Crossref

(15). B.L. Oksengendler, N.N. Turaeva, Doklady Physics 55 (2010) 477–479. Crossref

(16). T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Phys. Rev. A, 33 (1986) 1141−1151. Crossref

(17). E. Parilis, L. Kishinevskiy, N. Turaev, et al. Atomic Collisions on Solid Surfaces. North. Holl. Amsterdam, London, New York, Tokyo. Elsevier Sci. Publ. BV. 1993.

(18). S.E. Maksimov, B.L. Oksengendler, N.Yu. Turaev, J. Surf. Invest. 7 (2) (2013) 333–338. Crossref

(19). Feder, E. Fractals. Plenum Press. New York. 1988. 262 p.

(20). P.G. Shewmon. Diffusion in solids. McGraw-Hill Book Com., NY, San Francisco, Toronto, London, 1961. 189 p.

(21). R.P. Yadav, M. Kumar, A.K. Mittal1 and A.C. Pandey Chaos 25:083115 (2015). Crossref

(22). B.L. Oksengendler, S.E. Maksimov, M.B. Marasulov, Nanosystems: physics, chemistry, mathematics 6 (6) (2015) 825–832. Crossref

(23). I.E. Tamm, Collection of scientific works in two volumes. Moscow: Nauka,1975, V.1 (in Russian).

Downloads

Published

2016-10-27

How to Cite

Oksengendler, B. L., Ashurov, N. R., Maksimov, S. E., Karpova, O. V., & Rashidova, S. S. (2016). Role of Fractals in Perovskite Solar Cells. Eurasian Chemico-Technological Journal, 18(4), 293–298. https://doi.org/10.18321/ectj471

Issue

Section

Articles