Carbon Nanotube Dry Spinnable Sheets for Solar Selective Coatings by Lamination

Authors

  • P. M. Martinez NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083–0688, USA
  • V. A. Pozdin Solarno Inc., Irving, TX 75061, USA
  • A. Papadimitratos Solarno Inc., Irving, TX 75061, USA
  • W. Holmes Solarno Inc., Irving, TX 75061, USA
  • F. Hassanipour NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083–0688, USA
  • G. Dover Department of Physics and Astronomy, University of Surrey, Guildford, GU2 7XH, UK
  • A. A. Zakhidov NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083–0688, USA; Solarno Inc., Irving, TX 75061, USA; ; National University of Science and Technology, MISiS, 119049, Leninskiy prospekt 4, Moscow, Russia; ITMO University, 191002, Lomonosova street, 9, St. Petersburg, Russia

DOI:

https://doi.org/10.18321/ectj479

Abstract

Carbon nanotube, oriented free standing sheets can be laminated on any surface as selective solar absorbers while simultaneously dry spun in a highly controlled process from vertically oriented forests grown by CVD. We have found that properties of a CNT forest strongly correlate with the optical transparency and reflectivity of CNT sheets required for solar selective coatings and can be properly tuned for optimal coatings for solar collectors. We study absorptive and emissive properties of CNT sheets that are laminated by a simple automated and controlled process, developed for coating of cylindrical glass tubes for evacuated solar collectors (ETC). The advantages of Joule heating of CNT coatings are demonstrated and test results described, showing a unique property of fast heating as compared to slow heating in conventional solar water heaters.

References

[1]. International Energy Agency IEA. Solar Energy Perspectives. Solar Energy Perspectives (2011). <a href="http://doi.org/10.1787/9789264088047-en">Crossref</a>

[2]. International Energy Agency, I. Key World Energy Statistics 2016. <a href="http://doi.org/10.1787/22202811">Crossref</a>

[3]. Christopher J. Koroneos, Evanthia A. Nanaki, J. Clean. Prod. 37 (2012) 154–161. <a href="https://doi.org/10.1016/j.jclepro.2012.07.001">Crossref</a>

[4]. Y. Taheri, K. Alimardani, B.M.S. Ziapour, Heat Mass Transf. 51 (2015) 1403–1411. <a href="https://doi.org/10.1007/s00231-015-1510-x">Crossref</a>

[5]. R. Singh, I.J. Lazarus, M. Souliotis, Renew. Sustain. Energy Rev. 54 (2016) 270–298. <a href="https://doi.org/10.1016/j.rser.2015.10.006">Crossref</a>

[6]. Y. Tian, C.Y. Zhao, Appl. Energy 104 (2013) 538– 553. <a href="https://doi.org/10.1016/j.apenergy.2012.11.051">Crossref</a>

[7]. N. Selvakumar, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 98 (2012) 1–23. <a href="https://doi.org/10.1016/j.solmat.2011.10.028">Crossref</a>

[8]. H. Benli, Renew. Sustain. Energy Rev. 54 (2016) 99–109. <a href="https://doi.org/10.1016/j.rser.2015.09.061">Crossref</a>

[9]. S.A. Kalogirou, S. Karellas, K. Braimakis, C. Stanciu, V. Badescu, Prog. Energy Combust. Sci. 56 (2016) 106–137. <a href="https://doi.org/10.1016/j.pecs.2016.05.002">Crossref</a>

[10]. S. Jaisankar, J. Ananth, S. Thulasi, S.T. Jayasut-hakar, K.N. Sheeba, Renew. Sustain. Energy Rev. 15 (2011) 3045–3050. <a href="https://doi.org/10.1016/j.rser.2011.03.009">Crossref</a>

[11]. S.A. Kalogirou, Prog. Energy Combust. Sci. 30 (2004) 231–295. <a href="https://doi.org/10.1016/j.pecs.2004.02.001">Crossref</a>

[12]. G.L. Morrison, I. Budihardjo, M. Behnia, Sol. Energy 76 (2004) 135–140. <a href="https://doi.org/10.1016/j.solener.2003.07.024">Crossref</a>

[13]. C.C. Smith, & T.A. Weiss, Sol. Energy 189 (2) (1977) 109-113. <a href="https://doi.org/10.1016/0038-092X(77)90047-0">Crossref</a>

[14]. Z. Pluta, Journal of Power Technologies 91 (3) (2011) 158–164.

[15]. M.J. Ahmad, G.N. Tiwari, Open Renew. Energy J. 2 (2009) 19–24. <a href="http://doi.org/10.2174/1876387100902010019">Crossref</a>

[16]. S. Limpa, Incidence angle modifiers: a general approach for energy calculations. 0–4.

[17]. V. Dabra, L. Yadav, A. Yadav, Int. J. Eng. Sci. Technol. 5 (2013) 100–110. <a href="http://doi.org/10.4314/ijest.v5i4.9">Crossref</a>

[18]. Z.-P. Yang, L. Ci, J.A. Bur, S.-Y. Lin, & P.M. Ajayan, Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array. <a href="http://dx.doi.org/10.1021/nl072369t">Crossref</a>

[19]. Z. Chen, T. Boström, Sol. Energy Mater. Sol. Cells 144 (2016) 678–683. <a href="https://doi.org/10.1016/j.solmat.2015.10.016">Crossref</a>

[20]. E. Zambolin, D. Del. Col, Sol. Energy 84 (2010) 1382–1396. <a href="https://doi.org/10.1016/j.solener.2010.04.020">Crossref</a>

[21]. Zhang, Mei, Shaoli Fang, Anvar A. Zakhidov, Sergey B. Lee, Ali E. Aliev, Christopher D. Williams, Ken R. Atkinson, and Ray H. Baughman. Science 309 (5738) (2005) 1215-1219.

[22]. C.P. Huynh, S.C. Hawkins Carbon 48 (2010) 1105–1115. <a href="https://doi.org/10.1016/j.carbon.2009.11.032">Crossref</a>

[23]. Ali E. Aliev, Csaba Guthy, Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, John E. Fischer, Ray H. Baughman, Carbon 45 (2007) 2880–2888. <a href="https://doi.org/10.1016/j.carbon.2007.10.010">Crossref</a>

[24]. A.M. Marconnet, M.A. Panzer, K.E. Goodson, Rev. Mod. Phys. 85 (2013) 1295. <a href="https://doi.org/10.1103/RevModPhys.85.1295">Crossref</a>

[25]. Wei Lin, Jintang Shang, Wentian Gu, C.P. Wong, Carbon 50 (2012) 1591–1603. <a href="https://doi.org/10.1016/j.carbon.2011.11.038">Crossref</a>

[26]. C.P. Huynh, S.C. Hawkins Carbon 48 (2010) 1105–1115. <a href="https://doi.org/10.1016/j.carbon.2009.11.032">Crossref</a>

[27]. Jaegeun Lee, Eugene Oh, Hye-Jin Kim, Seungho Cho, Teawon Kim, Sunghyun Lee, Junbeom Park, Hee Jin Kim, Kun Hong Lee, J. Mater. Sci. 48 (2013) 6897–6904. <a href="https://doi.org/10.1007/s10853-013-7494-3">Crossref</a>

[28]. Ali E. Aliev, Csaba Guthy, Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, John E. Fischer, Ray H. Baughman, Carbon 45 (15) (2007) 2880–2888. <a href="https://doi.org/10.1016/j.carbon.2007.10.010">Crossref</a>

[29]. M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, A.R. Saito, Trans. R. Soc. A 368 (2010) 5355–5377. <a href="https://doi.org/10.1098/rsta.2010.0213">Crossref</a>

[30]. R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 64307–64311. <a href="https://doi.org/10.1063/1.2712152">Crossref</a>

Downloads

Published

2016-10-27

How to Cite

Martinez, P. M., Pozdin, V. A., Papadimitratos, A., Holmes, W., Hassanipour, F., Dover, G., & Zakhidov, A. A. (2016). Carbon Nanotube Dry Spinnable Sheets for Solar Selective Coatings by Lamination. Eurasian Chemico-Technological Journal, 18(4), 241–249. https://doi.org/10.18321/ectj479

Issue

Section

Articles