The Use Haloperoxidases in Organic Synthesis: Selected Reactions of Oxidation, Epoxydation and Sulfoxidation

Authors

  • V.M. Dembitsky Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, Hebrew University of Jerusalem, Jerusalem 91120, Israel
  • M. Srebnik Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, Hebrew University of Jerusalem, Jerusalem 91120, Israel

DOI:

https://doi.org/10.18321/ectj538

Abstract

Haloperoxidases are ubiquitous metalloenzymes that catalyse a variety of enantioselective oxygen-transfer reactions with hydrogen peroxide or alkylperoxides. Haloperoxidases are enzymes which catalyze the reaction of oxidation, epoxidation and sulfoxidation by hydrogen peroxide. These enzymes usually contain the FeHeme moiety or vanadium as an essential constituent at their active site, however, a few haloperoxidases which lack a metal cofactor are known. This review will examine the reactivity of the different haloperoxidases, particularly the mechanism of oxidation by hydrogen peroxide, and the mechanism of oxidation and sulfoxidation, including the newly reported regioselectivity and enantioselectivity of the haloperoxidases. The structure of chloroperoxidase, the vanadium active site and the role of critical amino acid side chains for catalysis and functional biomimetic systems, with specific relevance to the mechanism of the haloperoxidase enzymes. Advances have recently been made in using them to prepare, under controlled conditions, chiral organic molecules that are valuable for the synthesis of a wide range of useful compounds. The application of biocatalytic methods in asymmetric organic synthesis is of great interest as an alternative to chemical procedures employing chiral auxiliaries. Asymmetric oxidation of prochiral sulfides to yield optically active sulfoxides has been performed by many different techniques yielding varying enantiomeric excess values. Oxygenated metabolites are compounds that are commonly found in nature and they are produced by many different organisms. The oxygen atom is incorporated into organic compounds by enzyme-catalyzed reactions with oxygen ions as the oxygen source. For over 40 years haloperoxidases were thought to be responsible for the incorporation of mainly halogen atoms into organic molecules. However, haloperoxidases lack substrate specificity and regioselectivity, and the connection of haloperoxidases with the in vivo formation of oxygenated as well as halometabolites has been demonstrated. Recently, molecular genetic investigations showed that, at least in bacteria, fungi, and other organisms a different class of halogenases is involved in halo- and oxygenated metabolite formation. These halogenases were found to require FADH2, which can be produced from FAD and NADH by unspecific flavin reductases. The FADH2-dependent halogenases and haloperoxidases show substrate specificity and regioselectivity, and their genes have been detected in many halometabolite-producing organisms, suggesting that this type of halogenating enzymes constitutes the major source for halo- and oxygenated metabolite formation in bacteria and also in other organisms. Distribution of haloperoxidases in nature also is demonstrated in this brief review.

References

(1). Dembitsky, V.M. & Srebnik, M., Prog. Lipid Res. 41:315-367 (2002).

(2). Dembitsky, V.M. & Srebnik, M. In: Titanium and Zirconium in Organic Synthesis, I. Marek, Ed., Chapter 7, Wiley-VCH/Herr Maier, Wiernheim, Germany, pp. 230-281, 2002.

(3). Van Rantwijk, F. & Sheldon, R.A., Current Opinion Biotechnol. 11:554–564 (2000).

(4). Colonna, S., Gaggero, N., Richelmi, C. & Pasta, P., Trends Biotechnol. 17:163-167 (1999).

(5). Adam, W., Lazarus, M., Saha-Möller, C.R., Weichold, O., Hoch, U., Häring, D. & Schreier P. In: Biotransformations. F.K. Berlin, Ed.,Springer, 73-108, 1999.

(6). Littlechild, J., Current Opinion Chem. Biol. 3:28-34 (1999).

(7). Butler, A., Carter, J. N. & Simpson, M. T., Handbook on Metalloproteins. Bertini, I. Sigel, A. &.Sigel, H., Eds., M. Dekker, New York, pp. 153 –179, 1998.

(8). Butler, A., In: Bioinorganic Catalysis, pp 55 –79, Chapter 5, 2nd Edition, Reedijk, J. & Dekker,M., Eds., 1998.

(9). Butler, A., Coordinat. Chem. Rev. 187:17 – 35 (1999).

(10).Butler, A., Current Opinion Chem. Biol. 2:279 –285 (1998).

(11). Butler, A., In: Comprehensive Biological Catalysis, Chapter 32, pp. 1-12, Sinnott, M. Ed., British Academic Press, 1998.

(12). Bantleon, R., Altenbuchner, J. & Van Pee, K.H., J. Bacteriol. 176:2339-2348 (1994).

(13). Wiesner, W., Van Pee, K.H. & Lingens, F. J., Biol. Chem. 263:13725-13734 (1988).

(14). Morris, D.R. & Hager, L.P., J. Biol. Chem. 241:1763-1768 (1966).

(15). Sono, M., Roach, M.P., Coulter, E.D. & Dawson, J.H., Chem. Rev. 96:2841–2887 (1996).

(16). Vilter, H., Phytochemistry 23:1387-1390 (1984).

(17). Plat, H., Krenn, B.E. & Wever, R., Biochem. J. 248:277-284 (1987).

(18). Van Schijndel, J.W.P.M., Vollenbrock, E.G.M. & Waver, R., Biochim. Biophys. Acta 1161:249-255 (1993).

(19). Collins, A.N., Sheldrake, G.N. & Crosby, J., Chirality in Industry. John Wiley & Sons, New York, 1998.

(20). Patti, A., Sanfilippo, C., Piattelli, M. & Nicolosi,G., J. Org. Chem. 61:6458–6461 (1996).

(21). Patti, A., Sanfilippo, C., Piattelli, M. & Nicolosi,G., Tetrahedron: Asymmetry 7:2665–2670(1996).

(22). Sanfilippo, C., Patti, A., Piattelli, M. & Nicolosi,G., Tetrahedron: Asymmetry 8:1569–1573(1997).

(23). Sanfilippo, C., Patti, A., Piattelli, M. & Nicolosi, G., Tetrahedron: Asymmetry 9:2809–2817(1998).

(24). Sanfilippo, C., Patti, A. & Nicolosi, G., Tetrahedron:Asymmetry 10:3273–3276 (1999).

(25). Van Deurzen, M.P.J., Rantwijk, F. & Sheldom,A.R., Tetrahedron 53:13183–13220 (1997).

(26).Hu, S. & Hager, L.P., Tetrahedron Lett. 40:1641–1644 (1999).

(27).Hager, L.P., Lakner, F.J. & Basavapathruni, A.,J. Mol. Cat. B: Enzym. 5:95–101 (1998).

(28). Lakner, F.J., Cain, K.P. & Hager, P.L., J. Am.Chem. Soc. 119:443–444 (1997).

(29). Colonna, S., Gaggero, N., Casella, L., Carrea,G. & Pasta, P., Tetrahedron: Asymmetry 4:1325–1330 (1993).

(30). Allain, E.J., Hager, L.P., Deng, L. & Jacobsen,E.N., J. Am. Chem. Soc. 115:4415–4416 (1993).

(31). Zaks, A. & Dodds, D.R., J. Am. Chem. Soc.117:10419–10424 (1995).

(32). Everett, R.R., Soedjak, H.S. & Butler, A., J. Biol. Chem. 265:15671-15677 (1990).

(33). Soedjak, H.S., Walker, J.V. & Butler, A., Biochemistry 34:12689-12693 (1995).

(34). De Boer, E. & Wever, R., J. Biol. Chem. 263:12326-12331 (1988).

(35). Van Schijndel, J.W.P.M., Barnett, P., Roelse, J.,Vollenbroek, E.G.M. & Wever, R., Eur. J.Biochem. 225:151–157 (1994).

(36). Matsummura, K., Hashiguchi, S., Ikariya, T. & Noyori, R., J. Am. Chem. Soc. 119:8738-8739 (1997).

(37). Hu, S. & Hager, L.P., Biochem. Biophys. Res. Commun. 253:544-546 (1998).

(38). Hu, S. & Hager, L.P., J. Am. Chem. Soc. 121:872-873 (1999).

(39). Kiljunen, E. & Kanerva, L.T., Tetrahedron: Asymmetry 10: 3529-3535 (1999).

(40). Kiljunen, E. & Kanerva, L.T., J. Mol. Catal. B: Enzymatic 9:163-172 (2000).

(41). Sanfilippo, C., Patti, A. & Nicolosi, G., Tetrahedron: Asymmetry 11:3269-3272 (2000).

(42). Dexter, A.F., Lakner, R.A., Campbell, J. & Hager, L.P., J. Am. Chem. Soc. 117:6412-6414 (1995).

(43). Ortiz de Montellano, P.R., Choe, Y.S., DePillis, G. & Catalano, C.E., J. Biol. Chem. 262:11641-11646 (1987).

(44). Van de Velde, F., Bakker, M., Van Rantwijk, F., Rai, G.P., Hager, L.P. & Sheldon, R.A., J. Mol. Catal. B: Enzymatic 11:765-769 (2001).

(45). Kren, V., Jawulokova, L., Sedmera, P., Polasek, M., Lindhorst, T.K. & Van Pee, K.H., Liebigs Ann. / Receuil, 2379-2383 (1997).

(46). Alvarez, R.G., Hunter, I.S., Suckling, C.J., Thomas, M. & Vitinius, U., Tetrahedron 57:8581- 8587 (2001).

(47). Morgan, J.A., Lu, Z. & Clark, D.S., J. Mol. Catal.B: Enzymatic 18:147–154 (2002).

(48). Krenn, B.E., Tromp, M.G.M. & Wever, R., J. Biol. Chem. 264:19287-19292 (1989).

(49). De Broer, E., Tromp, M.G.M., Plat, H., Krenn, B.E. & Wever, R., Biochim. Biophys. Acta 872:104-115 (1986).

(50). Wever, R., Krenn, B.E., de Broer, E., Offenberg, H. & Plat, H., Prog. Clin. Biol. Res. (Oxidases Relat. Redox. Syst.) 274:477-493 (1988).

(51). Moore, C.A. & Okuda, R.K., J. Nat. Toxins 5:295-305 (1996).

(52). Winter, G.E.M. & Batler, A., Biochemistry 35:11805-11811 (1996).

(53). Nieder, M. & Hager, L. Arch. Biochem. Biophys. 240:121-127 (1985).

(54). Van Deurzen, M.P.J., van Rantwijk, F. &Sheldon, R.A., J. Carbohydr. Chem. 16:299–309(1997).

(55). Gorzynski, J. & Smith, J., Synthesis 8:629-656 (1986).

(56). Newmyer, S.L. & Ortiz de Montellano, P.R., J. Biol. Chem. 270:19430-19438 (1995).

(57). Ozaki, S. & Ortiz de Montellano, P.R., J. Am. Chem. Soc. 116:4487-4488 (1994).

(58). Miller, V.P., De Pillis, G.D., Ferrer, J.C., Mauk, G. & Ortiz de Montellano, P.R., J. Biol. Chem. 267:8936-8942 (1992).

(59). Lakner, F.J. & Hager, L.P., Org. Chem. 61:3923-3925 (1996).

(60). Dexter, A.F., & Hager, L.P., J. Am. Chem. Soc. 117:817-818 (1995).

(61). Colonna, S., Gaggero, N., Richelmi, C., Carrea, G. & Pasta, P., Gazzeta Chim. Ital. 125:479-482 (1995).

(62). Lakner, F.J. & Hager, L.P., FASEB J. Suppl. 31, 11: P9 (1997).

(63). Manoj, K.M., Lakner, F.J. & Hager, L.P., J. Mol. Catal. B: Enzymatic 9:107-111 (2000).

(64).Buckland, B.C., Stephen, W.D., Connors, N.,Chartrain, M., Lee, C., Salmon, P., Gbewonyo,K., Gailliot, P., Singhvi, R., Olewinski, R., Reddy,J., Zhang, J., Goklen, K., Junker, B., & Greasham,R., Metabol. Eng. 1:63–74 (1999).

(65). Bishop, R., Comprehensive Org. Syn. 6:261–300(1991).

(66). Zhang, J., Roberge, C., Reddy, J., Connors, N.,Chartrain, M., Buckland, B. & Greasham, R.,Enzyme and Microbial Technol. 24:86–95 (1999).

(67). Hu, S., Gupta, P., Prasad, A.K., Gross, R.A. &Parmar, V.S., Tetrahedron Lett. 43: 6763–6766(2002).

(68). Julia, S., Masana, J. & Vega, J.C., Angew. Chem., Int. Ed. Engl. 19:929-934 (1980).

(69). Bentley, P.A., Bergeron, S., Cappi, M.W., Hibbs, D.E., Hursthouse, M.B., Nugent, T.C., Pulido, R., Roberts, S.M. & Wu, L.E., Chem. Commun. 739 (1997).

(70). Bentley, P.A., Kroutil, W., Littlechild, J.A. & Roberts, S.M., Chirality 9:198-207 (1997).

(71). Wubbolts, M.G., Reuvekamp, P.R., Witholt, B., Enzyme Microb. Technol. 16:608-617 (1994).

(72). Wubbolts, M.G., Hoven , J., Melgert, B., Witholt, B., Enzyme Microb. Technol. 16:887-898 (1994).

(73). Colonna, S., Gaggero, N., Manfredi, A., Cassella, L., Gullotti, M., Carrea, G. & Pasta, P., Biochemistry 29:10465-10468 (1990).

(74). Colonna, S., Gaggero, N., Cassella, L., Carrea, G. & Pasta, P., Tetrahedron Asymmetry 3:93-106 (1992).

(75). Fu, H., Kondo, H., Ichikawa, Look, G.C. & Wong, C.H., J. Org. Chem. 57:7265-7270 (1992).

(76). Allenmark, S.G. & Andersson, M., Tetrahedron Asymmetry 7:1089-1094 (1996).

(77). Van Deurzen, M.P.J., Remkes, I.J., Van Rantwijk,F. Sheldon, R.A., J. Mol. Catal. A – Chem.,117:329-337 (1997).

(78). Lee, K., Brans, J.M. & Gibson, D.T., Biochem. Biophys. Res. Commun. 212:9-15 (1995).

(79). Vargas,_R.R., Bechara, E.J.H., Marzorati, L. & Wladislaw, B., Tetrahedron: Asymmetry 10:3219-3227 (1999).

(80). Sundaramoorthy, M., Terner, J. & Poulos, T.L., Structure 3:1367-1375 (1995).

(81). Allenmark, S.G. & Andersson, M.A., Chirality 10:146-153 (1998).

(82). Glahsl, G. & Herrmann, R.J., Chem. Soc., Perkin Trans 1, 1753-1761 (1988).

(83). Bravo, P., Piovosi, E. & Resnati, G., Synthesis 579-584 (1986).

(84). Andersson, M.A. & Allenmark, S.G., Tetrahedron 54:15293-15304 (1998).

(85). Soedjak, H.S. & Butler, A., J. Inorg. Chem., 29:5015-5017 (1988).

(86). Fauconnot, L., Nugier-Chauvin, C., Noiret, N., Poulain, S. & Patin, H., Phytochemistry, 47:1465-1471 (1998).

(87). Koch, I. & Keusgen, M., Pharmazie 53:668-675 (1998).

(88). Greenstein, J.P. & Winitz, M., Chemistry of the Amino Acids, Vol.3, Wiley, New York, 1961, p.2145.

(89). Morris, C.J. & Thompson, J.F., J. Am. Chem. Soc. 78:1605-1607 (1956).

(90). Barnsley, E.A., Tetrahedron 24:3747-3755 (1968).

(91). Holland, H.L. & Brown, F.M., Tetrahedron: Asymmetry 9:535-542 (1998).

(92). Holland, H.L., Brown, F.M., Johnson, D.V.,Kerridge, A., Mayne, B., Turner, C.D., Van Vliet,A.J., J. Mol. Catal. B: Enzymatic 17: 249–256(2002).

(93). Allenmark, S.G. & Andersson, M.A. Chirality, 10:246-252 (1998).

(94). Griffin, B.W., In: Everse, J., Everse, K.E. and Grisham, M.B., Eds. Peroxidases in Chemistry and Biology. CRC Press, Boca Raton, vol. II, pp. 85-137, 1991.

(95). Weyand, M., Hecht, H.-J., KieГџ, M.,. Liaud, M.- F., Vilter, H. & Schomburg, D., J. Mol. Biol. 293:595-611 (1999).

(96). Shimonishi, M., Kuwamoto, S., Inoue, H., Wever, R., Ohshiro, T., Izumi, Y. & Tanabe, T., FEBS Lett. 428: 105-110 (1998).

(97). Krenn, B.E., Izumi, Y. Yamada, H. & Wever, R., Biochim. Biophys. Acta 998:63-68 (1989).

(98). Yu, H. & Whittaker, J.W. Biochem. Biophys. Res. Commun. 160:87-92 (1989).

(99). Sheffield, D.J., Harry, T., Smith, A.J. & Rogers, L.J., Phytochemistry 32:21-26 (1993).

(100). Isupov, M.N., Dalby, A.R., Brindley, A.A., Izumi, Y., Tanabe, T., Murshudov, G.N. & Littlechild, J.A., J. Mol. Biol. 299:1035-1049 (2000).

(101). Everett, R.R., Kanofsky, J.R. & Batler, A., J. Biol. Chem. 265:4908-4914 (1990).

(102). Soedjak, H.S. & Butler, A., Biochim. Biophys. Acta 1079: 1-7 (1991).

(103). Jordan, P. & Vilter, H., Biochim. Biophys. Acta 1073:98-106 (1991).

(104). Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., Da Silva, J.A., FraГєsto da Silva, J.J. & Wever, R., Phytochemistry 57:633-642 (2001).

(105). Baden, D.G. & Corbett, M.D., Biochem. J. 187:205-211 (1980).

(106). Manthey, J.A., Hager, L.P. & McElvany, K.D., Methods Enzymol. 107:439-445 (1984).

(107). Ahern, T.J., Allan, G.G. & Medcalf, D.G., Biochim. Biophys. Acta 616:329-339 (1980).

(108). Beissner, R.S., Guilford, W.J., Coates, R.M. & Hager, L.P. Biochemistry 20:3724-3731 (1981).

(109). Ohshiro, T., Nakano, S., Takahashi, Y., Suzuki, Y. & Izumi, Y., Phytochemistry 52:1211-1215 (1999).

(110). Krenn, B.E., Plat, H. & Wever, R. Biochim. Biophys. Acta 912:287-291 (1987).

(111). Soegjak, H.S., Dissertation Abstr., UC Santa Barbara, 1991.

(112). Wever, R., Olafsson, G., Krenn, B.E., Tromp, M.G. M.G.M. 32nd IUPAC Conference, Absrt., Stockholm, No. 210, 1991.

(113). De Boer, E., Van Kooyk, Y., Tromp, M.G.M., Plat, H. & Wever, R., Biochim. Biophys. Acta 869:48-53 (1986).

(114). Pederson, M., Physiol. Plant 37:6-12 (1976).

(115). Hara, I. & Sakurai, T., J. Inorg. Chem. 72:23-28 (1998).

(116). Chen, Y.P., Lincoln, D. E., Woodin, S. A. & Lovell, C.R., J. Biol. Chem. 266:23909-23915 (1991).

(117). Ahren, T.J., Allan G.G. & Medcalf, D.G. Biochim. Biophys. Acta 616:329-336 (1980).

(118). Zeiner, R., Van PГ©e, K.H. & Lingens, F., J. General Microbiol. 134:3141-3149 (1988).

(119). Knoch, M., Van PГ©e, K.H., Vining, L.C. & Lingens, F., J. General Microbiol. 135:2493-2502 (1989).

(120). Van Pee, K.H., Sury, G. & Lingens, F., Biol. Chem. Hoppe-Seyler 368:1225-1232 (1987).

(121). Van PГ©e, K.H. & Lingens, F., J. General Microbiol. 131:1911-1916 (1985).

(122). Van PГ©e, K.H. & Lingens, F., J. Bacteriol. 161: 1171-1175 (1985).

(123). Tanaka, N., Dumay, V., Liao, Q., Lange, A.J. & Wever, R. Eur. J. Biochem. / FEBS 269:2162-2167 (2002).

(124). Kawanami, T., Miyakoshi, M., Dairi, T. & Itoh, N., Arch. Biochem. Biophys. 398:94-100 (2002).

(125). Jacks, T.J., De Lucca, A.J., Morris, N.M., Mol. Cell. Biochem. 195: 169-172 (1999).

(126). Messerschmidt, A & Wever, R., Microbiol. (Reading, England) 142:2129-2135 (1996).

(127). Barnett, P., Hemrika, W., Dekker, H.L., Muijsers, A.O., Renirie, R. & Wever, R., J. Biol. Chem. 273: 23381-23387 (1998).

(128). Shoun, H., Sudo, Y., Seto, Y. & Beppu, T., J. Biochem. 94:1219-1229 (1983).

(129). Hemrika, W., Renirie, R., Macedo-Ribeiro, S., Messerschmidt, A. & Wever, R., J. Biol. Chem. 274: 23820-23827 (1999).

(130). Bantleon, R., Altenbuchner, J. & Van Pee, K.H., J. Bacteriol. 176:2339-2347 (1994).

(131). Wolfframm, C., Lingens, F., Mutzel, R. & vanPée, K.H., Gene 130: 131-135 (1993).

(132). Marshall, G.C. & Wright, G.D., Biochem. Biophys. Res. Commun. 219:580-583 (1996).

(133). Roach, M.P., Chen, Y.P., Woodin, S.A., Lincoln, D.E., Lovell, C.R. & Dawson, J.H., Biochemistry 36:2197-2202 (1997).

(134). Burd, V.N., Vasilyeva, O.V., Voskoboev, A.I. & Van Pee, K.H., Biochemistry (Moscow) 63: 1299-1301 (1998).

(135). Verdel, E.F., Kline, P.C., Wani, S. & Woods, A.E., Comp. Biochem. Physiol. 125B:179-187 (2000).

(136). De Schrijver, A., Nagy, I., Schoofs, G., Proost, P., Vanderleyden, J., Van PГ©e, K.H. & De Mot, R., Appl. Environm. Microbiol. 63:1911-1916 (1997).

(137). Farhangrazi, Z.S., Sinclair, R., Yamazaki, I., Powers, L.S., Biochemistry 31:10763-10768 (1992).

(138). Rorrer, G.L., Tucker, M.P., Cheney, D.P. &Maliakal, S., Biotechnol. Bioeng. 74:389–395 (2001).

Downloads

Published

2002-10-20

How to Cite

Dembitsky, V., & Srebnik, M. (2002). The Use Haloperoxidases in Organic Synthesis: Selected Reactions of Oxidation, Epoxydation and Sulfoxidation. Eurasian Chemico-Technological Journal, 4(4), 221–241. https://doi.org/10.18321/ectj538

Issue

Section

Articles