Water Ozonation with Copper Catalyst for Organic Pollutants Removal

Authors

  • A. V. Shabalina Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
  • G. M. Mokrousov Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
  • E. D. Fakhrutdinova Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
  • T. I. Izaak Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
  • J. J. Wu Feng Chia University, Taichung, Taiwan

DOI:

https://doi.org/10.18321/ectj117

Abstract

This work presents high-porous honeycomb copper catalyst for organic pollutants removal from water during the ozonation process. This catalyst demonstrates high efficiency in removing target compounds (oxalic and benzoic acids and methylene blue), appropriate stability and resistance to abrasion. Copper catalyst behavior in the ozonation process was investigated. It was found that under ozonation conditions reversible В  oxidation/reduction of the copper surface layer takes place. In contact with ozone, copper surface can easily be oxidized resulting in formation of copper oxides. As expected, it leads to decomposition of organic substances during ozonation and reduction of copper catalyst surface layer. Copper (II) oxide was also found to be an active catalyst in oxidation of organic pollutants with ozone, but it is not appropriate to use bulk CuO because of its low abrasion resistance. Copper (II) ions that form due to dissolution of catalyst surface layer with participation of the acidic medium in the ozonation process were detected. Pollutants removal efficiency at different pH values was also studied. It was found that catalytic removal of organic pollutants takes place at low pH, as compared to low efficiency of hydroxyl-radical formation at the acidic pH. A possible scheme for organic pollutants removal during ozonation with copper catalyst was proposed.

References

1. Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J. Appl. Catal. B. 46:639 (2003).

2. Xu, N., and Gao, Y. Appl. Geochemistry. 23:783 (2008).

3. Liotta, L., Gruttadauria, M., Di Carlo, G., Perrini, G., and Librando, V. Journal of Hazard. Mater. 162:588 (2009).

4. Pines, D., and Reckhow, D. Ozone: Sci. and Eng. 25:25 (2002).

5. Muruganandham, M., and Wu, J.J. Appl. Catal. B. 80:32 (2008).

6. Andreozzi, R., Caprio, V., Insola, A., Marotta, and R., Tufano, V. Indust. & Eng. Chem. Res.
36:4774 (1997).

7. Ben-Moshe, T., Dror, I., and Berkowitz, B. Appl. Catal. B. 85:207 (2009).

8. Ernst, M., Lurot, F., and Schrotter, J.-Ch. Appl. Catal. B. 47:15 (2004).

9. Pinheiro da Silva, M.F., Soeira, L.S., Daghastanli, K.R.P., Martins, T.S., Cuccovia, I.M., Freire, R.S., and Isolani, P. C. Journ. of Therm. Anal. and Calorim. 102:907 (2010).

10. Pi, Y., Ernst, M., and Schrotter, J.-Ch. Ozone: Sci. and Eng. 25:393 (2003).

11. Beltran, F.J., Rivas, F.J., and Montero-de-Espinosa, R. Water Res. 39:3553 (2005).

12. Gracia, R., Cortes, S., Sarasa, J., Ormad P., and Ovelleiro, J.L. Ozone: Sci. and Eng. 22:
185 (2000).

13. Delanoe, F., Acedo, B., Karpel Vel Leitner, and N., Legube, B. Appl. Catal. B. 29:315
(2001).

14. Yunrui, Z., Wanpeng, Z., Fudong, L., Jianbing, W., and Shaoxia, Y. Chemosphere. 66:145 (2007).

15. Carbajo, M., Rivas, F., Beltran, F., Alvarez, P., and Medina, F. Ozone: Sci. and Eng. 28:229
(2006).

16. Ping, T.S., Hua, L.W., Qing, Z.J. and Nan, C. C. Ozone: Sci. and Eng. 24: 117 (2002).

17. Ma, J., Sui, M., Zhang, T., and Guan, Ch. Water Res. 39:779 (2005).

18. Orge, C.A., Sousa, J.P. S, Goncalves, F., Freire, C., Orfao, J.M.M., and Pereira, M.F.R.
Catal. Lett. 132:1 (2009).

19. Faria, P.C.C., Orfao, J.J.M., and Pereira, M.F.R. Appl. Catal. B. 79:237 (2008).

20. Wu, J. J., Chen, S. H., and Muruganandham, M. Indust. & Eng. Chem. Res. 47:2919 (2008).

21. Yuan, L., Chen, Z.L., Liu, Y., and Liu, Y. Adv. Mater. Res. 239-242: 1123 (2011).

22. He, K., Dong, Y., Li, Z., Yin, L., Zhang, A. M., Zheng, and Y. Ch. Journal of Hazard. Mater. 159:587 (2008).

23. Qi, F., Xu, B., Chen, Z., Ma, J., Sun, D., Zhang, L., and Wu, F. Journal of Hazard. Mater. 168:246 (2009).

24. Dong, Y., Yang, H., He, K., Wu, X., and Zhang, A. Appl. Catal. B. 82:163 (2008).

25. Kwong, C.W., Chao, C.Y.H., Hui, K.S., and Wan, M.P. Environ. Sci. Technol. 42:8504 (2008).

26. Einaga, H., and Futamura, S. Catal. Commun. 8:557 (2007).

27. Valdes, H., Murillo, F.A., Manoli, and J.A., Zaror, C.A. Journal of Hazard. Mater. 153:1036 (2008).

28. Ebadi, A., Mohammadzadeh, J.S., and Shafiei S. Chem. Eng. Technol. 32:778 (2009).

29. Sanchez-Polo, M., Rivera-Utrilla, J., and von Gunten, U. Water Res. 40:3375 (2006).

30. Zhao, L., Ma, J., Sun, Z., and Zhai, X. Journal of Hazard. Mater. 161:988 (2009).

31. Anciferov V.N., Kamelin V.V. Scientific and technological basis on high-porous honeycomb metals and alloys preparation. PSTU, Perm, R.F., 1997, p. 186.

32. Yoon, T.H., Johnson, S.B., Musgrave, Ch.B., and Brown, G.E. Geochimica et Cosmochimica Acta. 68:4505 (2004).

33. Martin, D.S., Cole, R.J., and Haq, S.Surface Science. 539:171 (2003).

34. Duckworth, O. ., and Martin, S. T.Geochimica et Cosmochimica Acta. 65:4289 (2001).

35. Beltran, F.J., Rivas, F.J., and Montero-de-Espinosa, R. Appl. Catal. B. 47:101 (2004).

36. Beltran, F.J., Rivas, F.J., and Montero-de-Espinosa, R. Appl. Catal. B. 139:221 (2002).

37. Shabalina, A.V., Mokrousov, G. M., Izaak, T.I., Fakhrutdinova, E.D., and Wu, J.J. Russian Journal of Appl. Chem. 84:2046 (2011).

38. Nawrocki, J., and Kasprzyk-Hordern B. Appl. Catal. B. 99:27 (2010).

39. Zhang, T., Li, C., Ma, J., Tian, and H., Qiang, Z. Appl. Catal. B. 82:131 (2008).

Downloads

Published

2012-09-28

How to Cite

Shabalina, A. V., Mokrousov, G. M., Fakhrutdinova, E. D., Izaak, T. I., & Wu, J. J. (2012). Water Ozonation with Copper Catalyst for Organic Pollutants Removal. Eurasian Chemico-Technological Journal, 14(3), 219–226. https://doi.org/10.18321/ectj117

Issue

Section

Articles