Perspectives of Single-Wall Carbon Nanotube Production in the Arc Discharge Process

Authors

  • A.V. Krestinin Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia,
  • N.A. Kiselev Institute of Crystallography RAS, Leninskii Prospekt 59, Moscow, 117333, Russia
  • A.V. Raevskii Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia
  • A.G. Ryabenko Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia
  • D.N. Zakharov Institute of Crystallography RAS, Leninskii Prospekt 59, Moscow, 117333, Russia
  • G.I. Zvereva Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia

DOI:

https://doi.org/10.18321/ectj583

Abstract

Single-wall carbon nanotubes (SWNTs) promise wide applications in many technical fields. As a result purified SWNT material is sold now on the West market at more than $1000 per 1 gram. Thus developing an effective technology for SWNTs production rises to a very important scientific problem. The perspectives of three existing methods providing raw material in the technology of SWNT production have been analyzed. They are i) pulsed laser evaporation of graphite/metal composites, ii) evaporation of graphite electrodes with metal content in the arc discharge process, and iii) catalytic decomposition of the mixture of CO and metal carbonyl catalyst precursor. The observed dynamics of SWNT market points to replacing the laser method of SWNTs production by the arc process. The conclusion has been made that the technology based on the arc process will be the major one for the fabrication of purified SWNTs at least for the next five years. A reliable estimation of a low price limit of SWNTs was derived from a comparison of two technologies based on the arc discharge process: the first one is the production of SWNTs and the second one is the production of a fullerene mixture С60 + С70. The main conclusion was made that the price of purified SWNTs should always be more by 2-3 times the price of fullerene mixture. The parameters of a lab-scale technology for the production of purified SWNTs are listed. A large-scale application of the developed technology is expected to reduce the price of purified SWNTs by approximately ten times. The methods now employed for the characterization of products containing SWNTs are briefly observed. It is concluded that electron microscopy, thermogravimetric analysis, absorption and Raman spectroscopy, measurement of the specific surface aria, optical microscopy - each in separation is not enough for extensive characterization of a sample containing SWNTs, and all these methods should be used together.

References

(1). Yu M.-F., Bradley S.F., Arepalli S., Ruoff R.S., Phys. Rev. Lett. 84 : 5552 (2000).

(2). Berber S., Kwon Y.-K., Tomanek D., Phys. Rev. Lett. 84 : 4613 (2000).

(3). Hone J, Llaguno M.C., Biercuk M.J., Johnson A.T., Batlogg B., Benes Z., Fischer J.E., Appl. Phys. A 74 : 339 (2002).

(4). E.Osawa (ed.), Perspectives of fullerene nanotechnology, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.

(5). Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G.E., Tomanek D., Fischer J.E., Smalley R.E., Science 273 : 483(1996).

(6). Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., Ghaemi H.F., Thio T., Nature, 382 : 54 (1996).

(7). Wei B.Q., Vajtai R., and Ajayan P.M., Appl. Phys. Lett. 79 : 1172 (2001).

(8). Our measurements using BET method and krypton adsorption. In preparation for publication.

(9). Gao B., Bower C., Lorentzen J.D., Fleming L., Kleinhammes A., Tang X.P., McNeil L.E., Wu Y., Zhou O., Chem. Phys. Lett., 327 : 69 (2000).

(10). Rakov E.G., Uspekhi Chimii, 70 : 44479 (2001).

(11). Tans S.J., Verschueren A.R.M., and Dekker C., Nature (London) 393 : 49 (1998).

(12). http://www.mercorp.com

(13). Chiang I.W., Brinson B.E., Huang A.Y., Willis P.A., Bronikowski M.J., Margrave J.L., Smalley R.E., Hauge R.H., J. Phys. Chem. B 105 : 8297 (2001).

(14). Krestinin A.V., Moravsky A.P., Chem. Phys. Lett. 286 : 479 (1998).

(15). Krestinin A.V., Moravskii A.P., and Tesner P.A., Chem. Phys. Reports 17 : 1687 (1998).

(16). Krestinin A.V., Moravskii A.P., Chem. Phys. Reports 18 : 515 (1999).

(17). Zvereva G.I., Krestinin A.V., Muradyan V.E., Tarasov B.P., Fursikov P.V., Zakharov D.N., Fullerenes and fullerene-like structures, Belarussian University, Minsk, 2000, p.78.

(18). Hutchison J.L., Kiselev N.A., Krinichnaya E.P., Krestinin A.V., Loutfy R.O., Morawsky A.P., Muradyan V.E., Obraztsova E.D., Sloan J., Terekhov S.V., Zakharov D.N., Carbon 39 : 761 (2001).

(19). Dillon A. C., Gennett T., Jones K. M., Alleman J. L., Parilla P. A. and Heben M. J., Adv. Mater. 11 : 1354 (1999).

(20). Bandow S., Asaka S., Saito Y., Rao A.M., Grigorian L., Richter E., Eklund P.C., Phys. Rev. Lett. 80 : 3779 (1998).

(21). Takizawa M., Bandow S., Yudasaka M., Ando Y., Shimoyama H., Iijima S., Chem. Phys. Lett. 326 : 351 (2000).

(22). Terekhov S.V., Obraztsova E.D., Lobach A.S., Konov V.I., Appl. Phys. A. 74 : 393 (2002).

(23). Kim P., Odom T.W., Huang J., Lieber C.M., Phys. Rev. Lett. 82 : 1225 (1999).

(24). Wildoeer J.W.G., Venema L.C., Rinzler A.G., Smalley R.E., Dekker C., Nature 391 : 59 (1998).

(25). Chiang I.W., Brinson B.E., Smalley R.E., Margrave J.L., Hauge R.H., J. Phys. Chem. B: 1157 (2001).

(26). Boul P.J., Liu J., Mickelson E.T., Huffman C.B., Smalley R.E., Chem. Phys. Lett. 310 : 367 (1999).

(27). In preparation for publication.

(28). Walters D.A., Casavant M.J., Qin X.C., Huffman C.B., Boul P.J., Ericson L.M., Haroz E.H., O'Connell M.J., Smith K., Colbert D.T., Smalley R.E., Chem. Phys. Lett. 338 : 14 (2001).

(29). Liu J., Casavant M.J., Cox M., Walters D.A., Boul P., Lu W., Rimberg A.J., Smith K.A., Colbert D.T., Smalley R.E., Chem Phys. Lett. 303 : 125 (1999).

Downloads

Published

2003-01-15

How to Cite

Krestinin, A., Kiselev, N., Raevskii, A., Ryabenko, A., Zakharov, D., & Zvereva, G. (2003). Perspectives of Single-Wall Carbon Nanotube Production in the Arc Discharge Process. Eurasian Chemico-Technological Journal, 5(1), 7–18. https://doi.org/10.18321/ectj583

Issue

Section

Articles