Formulating Drugs for Inhalers and Stability Issues

Authors

  • R. C. Toon Nemaura Pharma Limited, Holywell Park, Loughborough, LE11 3AQ, UK
  • E. C. Preedy School of Pharmacy and Pharmaceutical Sciences and School of Engineering, Cardiff University, Cardiff, CF10 3NB, UK
  • P. Prokopovich School of Pharmacy and Pharmaceutical Sciences and School of Engineering, Cardiff University, Cardiff, CF10 3NB, UK

DOI:

https://doi.org/10.18321/ectj124

Abstract

The main topic addressed in this paper is the formulation of pressurised metered dose inhalers and the problems associated with formulating medications for high pressure systems. Formulations for pressurised metered-dose inhalers (pMDIs) generally consist of two main types, solution and suspension-based systems. In the latter version, the active ingredient ideally remains mainly in the solid state, which can thus reduce problems with chemical degradation. However, the physical stability of such systems, in terms of aggregation, flocculation, creaming, sedimentation, propellant clathrates and bridging can then become problematic. The problems associated with solution-based systems revolve around the chemical stability of the active ingredients.

References

1. Pritchard J.N. The influence of lung deposition on clinical response J. Aerosol Med, 2001,14, S19-S26.

2. Byron P.R. Dosing reproducibility from experimental albuterol suspension metered-dose inhalers, Pharm Res, 1994, 11, 580-584.

3. Gupta A., Myrdal P.B. On-line high performance liquid chromatography method for analyte quantitation from pressurized metered dose inhalers. Chromatography A, 2004, 1033, 101-106.

4. Williams III R.O., Lui J. Formulation of a protein with propellant HFA 134a for aerosol delivery’, Eur. J. Pharm Biopharm, 1999, 47, 145.

5. Blondino F.E., Byron P.R. J. Pharm Biomed., 1999, 13, 111.

6. Simms P.J., Towne R.W., Gross C.S., Miller R.E. J. Pharm Biomed, 17 (1998) 841.

7. Sehi S.K., Norwood D.L., Haywood P.A., Prime D. J. Biopharm Sci, 3, (1992) 63.

8. Norwood D.L., Prime D., Downey B.P., Creasy L., Sethi J.S.K., Haywood P.J. J. Pharm Biomed, 13 (1995) 293.

9. Dalby R.N., Philips E.M., Byron P.R. Determination of drug solubility in aerosol propellants’, Pharm Res, 1991, 8, 1206-1209.

10. Phillips E.M., Stella V.J. Rapid expansion from supercritical solutions: applications to pharmaceutical processes, Int. J. Pharm, 1993, 94, 1-10.

11. Purewal T.S. Formulation of metered dose inhalers, in Purewal T.S., Grant D.J.W. Metered dose inhaler technology, Buffalo Grove, IL, Interpharm, 1998.

12. Williams III R.O., Hu C. A study of an epoxy aerosol can lining exposed to hydrofluoroalkane propellants, Eur. J. Pharm. and Biopharm, 1997, 44, 195-203.

13. Vervaet C., Byron P.R. Drug-surfactantpropellant interactions in HFA-formulations, Int. J. Pharm, 1999, 186, 13-30.

14. Soine W.H., Blondino F.E., Byron P.R., Chemical stability in pressurized inhalers formulated as solutions, J. Biopharm Sci., 1992, 3, 41-47.

15. Blondino F.E., Byron P.R. Drug stability in non-aqueous solutions-influence of surfactant concentrations, in Byron P.R., Dalby R.N., Farr S. J. Respiratory Drug Delivery V, Buffalo Grove, I.L., Interpharm Press, (1996), 125-131.

16. Philips E.M., Byron P.R., Fults K, Hickey A.J. Optimized inhalation aerosols. II Inertial testing methods for particle size analysis of pressurized inhalers, Pharm Res, 1997, 1228-1233.

17. Michael Y., Snowden M.J., Chowdhry B.Z., Ashurst I.C. Davies-Cutting C.J., Riley T. Characterisation of the aggregation behavior in a salmeterol and fluticasone propionate inhalation aerosol system’, Int. J. Pharm, 2001, 221,.165-174.

18. Michael Y., Snowden M.J., Chowdhry B.Z., Ashurst I.C., Davies-Cutting C.J., Gray S. The physic-chemical properties of salmeterol and fluticasone propionate in different solvent environments, Int. J. Pharm, 2000, 200, 279-288.

19. Hallworth G.W. The formulation and evaluation of pressurized metered dose inhalers, in, Drug Delivery to the Respiratory Tract, Chichester, Ellis Horwood, 1987, 87-118.

20. Brindley A. The chlorofluorocarbon to hydrofluoroalkane transition: the effect on pressurized metered dose inhaler suspension stability, Journal of Allergy and Clinical Immunology, 1999,104, S221-S226.

21. Jinks P. Preparation and utility of sub-micron lactose, a novel excipient for HFA MDI suspension formulations, in Proceedings of the Drug Delivery to the Lungs XIV, 2003, 199-202.

22. Blatchford C. Chemical and physical characterization of sub-micron lactose, a bulking agent for suspension metered MDI products, ‘Conference Proceedings of the Drug Delivery to the Lungs XIV, 2003, 203-206.

23. James J. The surface characterization and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers, 2008, Int. J. Pharm, 209-221.

24. Newel H.E., Buckton G., Butler D.A., Thielmann F., Williams D.R. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous and recently milled lactose, Pharm Res, 2001, 18, 662-666.

25. Philips E.M., Byron P.R. Surfactant promoted crystal growth of micronized methylprednisolone in trichloromonomethane’, Int. J. Pharm, 1994, 110, 9-19.

26. Ahfat G., Buckton R., Burrows R., Ticehurst M.D. An exploration on inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging data, Eur. J. Pharm Sci, 2000, 9, 271.

27. Tong H.H.Y., Shekunov B.Y., York P., Chow A.H.L. Predicting the aerosol performance of dry powder of dry powder inhalation formulations by interparticle interaction analysis using inverse gas chromatography. J. Pharm Sci, 2006, 95, 228.

28. Buckton G., Choularton A., Beezer A.E., Chatham S.M. The effect of the comminution technique on the surface energy of a powder, Int J Pharm, 1988, 47, 121.

29. Bowman P.A., Greenleaf D. Non-CFC metered dose inhalers: the patent landscape. Int. J.Pharm, 1999, 186, 91-94.

30. Dellamary L.A., Tarara T.E., Smith D.J., Woelk C.H., Adractas A., Costello M.L,, Gill H., Weers J.G. Hollow porous particles in metered dose inhalers, Pharm Res, 2000, 17, 168-174.

31. Edwards D.A., Hanes J., Caponetti G., Hrkach J., Ben-Jebria A., Eskew M.L., Mintzes J., Deaver D., Lotan N., Langer R. Large porous particles for pulmonary drug delivery, Science, 1977, 276, 1868-1871.

32. Keller M. Innovations and perspectives of metered dose inhalers in pulmonary drug delivery. Int. J. Pharm, 1999, 186, 81-90.

33. Hickey A.J., Dalby R.N., Byron P.R. Effects of surfactants on aerosol powders is suspension. Implications for airborn particle size. Int. J. Pharm, 1988, 42, 267-270.

34. Wyatt D.A., Vincent B. Electrical effects in non-aqueous systems. J. Biopharm Sci, 1992, 3 27-31. 698-705.

35. Byron P.R., Peart J., Staniforth J.N. Aerosol electrostatics I: Properties of fine powders before and after aerosolization by dry powder inhalers. Pharm. Res. 1997; 14: 698-705.

36. Peart J., Magyar C., Byron P.R. Aerosol electrostatics-metered dose inhalers (MDIs): reformulation and device design issues’, in Byron P.R., Dalby R.N., Farr S.J., Respiratory Drug Delivery VI, Buffalo Grove, Interpharm Press IL, 1998, 227-233.

37. Englezos P. Clathrate hydrates, Ind. Eng. Chem. Res, 1993, 32, 1251-1274.

38. Koh C.A. Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev., 2002, 31, 157-167.
39. Patchkovski S., Tse J.S. Thermodynamic stability of hydrogen clathrates, Proc. Natl. Acad. Sci, 2003, 100, 14645-14650.

40. Buffett B.A. Clathrate hydrates. Annu Rev Earth Planet Sci, 2002, 28, 477-507.

41. Dalby R.N. and Byron P.R. Formulations for delivery of beclomethasone dipropionate by metered dose inhalers containing no chlorofluorocarbon propellants, US Patent 5202 110, 13 1993-Apr-13.

42. Bouhroum A., Burley J.C., Champness N.R., Toon R.C., Jinks P.A., Williams P.M., Roberts C.J. An assessment of beclomethasone dipropionate clathrate formation in a model suspension metered dose inhaler. Int. J. Pharm, 2010, 391, 98-106.

43. Harris J.A., Carducci M.D., Myrdal P.B. Beclomethasone dipropionate crystallized from HFA-134a and ethanol, 2003, Acta Cryst, 1631-1633.

44. Steckel H., Wehle S. A novel formulation technique for metered dose inhaler (MDI) suspensions’, Int. J. Pharm, 2004 13, 284, 1-2.

45. Roberts R.J., Rowe R.C., York P. The relationship between indentation hardness of organic solids and their molecular structure. J. Mat Sci, 1994, 29, 2289-2296.

46. Parrott E.L. Encyclopedia of Pharmaceutical Technology, (1990) New York, Marcel Dekker.

47. Ogura K., Sobue H. Changes in morphology with milling of the commercial microcrystalline cellulose. J. Appl. Polym. Sci., 1970, 14, 1390-1393.

48. Buckton G. Characterization of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Adv. Drug Del. Rev, 1997, 26, 17-94.

49. Williams III R.O., Barron M.K., Jose Alonso M., Remunan-Lopez C. Investigation of a pMDI system containing chitosan microspheres. Int. J. Pharm, 1998, 174, 209-222.

50. Stefely J.S., Duan D.C., Brown B.A., Jozwiakowski J.P., Ruble S.A., Shultz D.W. et al, Proceeding of the 224th ACS National Meeting, Boston, MA, US, 18-22 August 2002:COLL-322.

51. Stefely J.S., Brown B., Hammerbeck D.M., Stein S.W. Equipping the MDI for the 21st century by expanding its formulation options, in Respiratory Drug Delivery VIII, (2002).

52. 3M Innovative Properties Company: US 2003059331 (2003).

53. Zheng J.Y., Fulu M.Y., Lee D.Y., Barber T.E., Adjei A.L. Pulmonary peptide delivery: effect of taste-masking excipients on leuprolide suspension metered-dose inhalers. Pharm Dev Technol (2001) 6(4): 521-530.

54. Lawrence M.J., Rees G.D. Microemulsionbased media as novel drug delivery systems, Adv. Drug Deliv Rev, 2000, 45, 89-121.

55. Butz N., Porte C., Courrier H., Krafft M.P., Vandamme T.F. Reverse water-influorocarbon emulsions for the use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int. J. Pharm, 2002, 238, 257-269.

56. Williams III R.O., Vorapann M., Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-betacyclodextrin. Eur. J. Pharm and Biopharm, 1998, 46, 355-360.

57. Pharmatech GMbH: US2003066031 (2003).

58. Dickinson P.A., Howells S.W., Kellaway I.W. Novel nanoparticles for pulmonary drug administration, J. Drug Target, 2001, 9, 295-302.

59. Sommerville M.L., Hickey A.J. Aerosol generation by metered dose inhalers containing dimethyl ether/propane inverse microemulsions’, AAPS Pharm Sci. Tech. 2003, 4(4):455-461.

60. Williams III R.O., Repka M., Lui J. Influence of propellant compositions on drug delivery from pressurized metered-dose inhaler, Drug Dev. Ind. Pharm, 1998, 24, 763-770.

61. Blondino F.E., 1995, Ph.D Thesis, Virginia Commonwealth University, USA.

62. Ranucci J.A., Dixit S., Bray Jr. R.N, Goldman D. Controlled flocullation in metered dose inhalers, Pharm Res, 1987, 4, 25.

63. Johnson K.A. Aerosol drug formulations. US Patent 5 126, 123, 1992-Jun-30.

64. Blondino F.E., Byron P.R. Surfactant dissolution and water solubilization in chlorine-free liquefied gas propellants, Drug Dev Ind Pharm, 1998, 24, 935-945.

65. Ridder K.B., Davies-CuttingIan C.J., Kellaway I.W. Surfactant solubility and aggregate orientation in hydrofluoroalkanes’, Int. J. Pharm 2005, 295, 57-65.

66. Rosch M.L. Configuration of the polyoxyethylene chain in bulk’, in Schick M.J. Nonionic Surfactants, New York, 1967, Marcel Dekker.

67. Bailey F.E., Koleske J.V. Configuration and hydrodynamic properties of the polyethylene chain in solution, in Schick M.J. Non-ionic surfactants, New York, 1967, Marcel Dekker, New York.

68. Brown A.R., George D.W. Tetrafluoroethane (HFC 134a) propellant-driven aerosols of proteins. Pharm Res, 1997 14, 1542-1547.

69. Williams III R.O., Liu J. Formulation of a protein with propellant HFA 134a for aerosol delivery. Eur. J. Pharm Sci, 1998 a, 7, 137-144.

70. Muller B.W., Fischer W., 1989. German Patent DE3744329A1.

71. Eike, H.F., Hopmann, R.F.W., Christen, H. Kinetics of conformational change during micelle formation in a polar media. Berichte der Bunsengesellschaft, 1975, 79, 667-673.

72. Eike H.F. Micelles in apolar media, in Mittal K.L., Micellization, Solubilization and microemulsions, New York, 1977, Plenum Press, 429-443.

73. Miller N.C. The effect of water in inhalation suspension aerosol formulations, in Byron P R, Respiratory Drug Delivery, Boca Raton, Florida, CRC Press, 1990, 249-257.

74. Reynolds J.M., McNamara D.P. Pharm Res, 13, 1996, 809-811.

75. Williams G. Moisture transport into chlorofluorocarbon-free metered dose inhalers. Journal of Allergy and Clinical Immunology, 1999, 104, S227-S229.

76. Murata S., Ito H., Izumi T., Chikushi A. Effect of moisture content in aerosol on the spray performance of Stmerin® D HFA preparations. Chemical and Pharmaceutical Bulletin, 2006, 54, 1276-1280.

77. Williams III R.O., Chengjiu H. Moisture uptake and its influence on pressurized metered dose inhalers, Pharmaceutical Development and Technology, 2000, 5, 153-162.

78. Kulphaisal P., Peart J., Byron P.R. Influence of water on electrical properties in hydrofluoroalkane based metered dose inhalers, in Dalby R.N., Byron P.R., Peart J., Farr S.J. Respiratory Drug Delivery VIII, Raleigh, NC, Davis Horwood International, 2002, 783-785.

79. Peart J., Orban J.C., McGlynn P., Redmon M.P., Sargeant C.M., Byron P.R. MDI electrostatics: Valve and formulation interactions that really make a difference, in Dalby R.N., Byron P.R., Peart J., Farr S.J., Respiratory Drug Delivery VIII, Raleigh, NC: Davis Horwood International, 2002, 223-230.

80. Naini V., Byron P.R., Dalby R.N. Particles for inhalation produced by spray drying and electrostatic
precipitation of different protein sugar solutions’, in Byron P.R., Dalby R.N., Farr S.J. Respiratory Drug Delivery V, Buffalo Grove, IL, Interpharm Press, 1996, 382-384.

81. Gallagher-Wetmore P., Coffey M.P., Krukonis V. Application of supercritical fluids in recrystallization:
nucleation and gas anti-solvent (GAS) techniques, in Respiratory Drug Delivery IV, (1994), 287-295.

82. York P., Hanna M., Yu. Shekunov B., Humphrey G.O. Microfine particle formation by SEDS (solution enhanced dispersion by supercritical fluids); scale-up by design, in Byron P.R., Dalby R.N., Farr S.J. Respiratory Drug Delivery VI, Buffalo Grove, Interpharm Press, 1998, 169-175.

83. Steckel H., Thies J., Muller B.W. ‘Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide’, Int. J. Pharm, 1997, 152, 99-110.

84. Tom J.W., Debenedetti P.G. Particle formation with supercritical fluids-a review. J. Aerosol. Sci, 1991, 22, 555-584.

85. Laube B.L. The expanding roles of aerosols in systemic drug delivery, gene delivery and accinations. Respir Care, 2005; 50, 1161-76.

86. Davies M.E., Chen Z., Shin D.M. Nanoparticle therapeutics: an emerging treatments modality for cancer’, Nat. Rev. Drug Discov, 2008; 7:771-82.

87. Lai S.K., Wang Y.Y., Hanes J. Mucuspenetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Del Rev, 2009; 61, 158-71.

88. Willart J.F., Descamps M. Solid state amorphization of pharmaceuticals. Molecular Pharmaceutics, 2008, 5, 905-920.

89. Otsuka M., Matsumoto T., Kaneniwa N. Effect of environmental temperature on polymorphic solid-state transformation of indomethacin during grinding. Chemical & Pharmaceutical Bulletin, 1986, 34, 1784-1793.

90. Muller R.H., Shegokar R. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm, 2010, 399, 129-139.

91. Muhrer G., Schneeburger R., Wirth W., Baumberger A. Micronization of a pharmaceutically active ingredient, useful in e.g. inhalation formulations, comprises suspending the agent in a propellant or compressed gas, processing the suspension and obtaining dry powder depressurization. International Patent WO2005089718-A2, 2005.

92. Keck C.M., Muller R.H., ‘Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization’, European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 3-16.

93. Johnson K.A. ‘Interfacial Phenomena and phase behavior in metered dose inhaler formulations’, Biological Basis for Therapy, A. J. Hickey (ed), Marcel Dekker, New York, NY, 1996, pp. 385-415.

94. Smyth H.D.C. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Del Rev, 2003, 55, 807-828.

95. Tzou T.Z., Pachuta R.R., Coy R.B., Schultz R.K. Drug form selection in albuterolcontaining metered-dose inhaler formulations and its impact on chemical and physical stability. J. Pharm Sci, 1977, 86, 1352-1357.

96. Parsons G.E., Buckton G., Chatham S.M. The use of surface energy and polarity determinations to predict physical stability of non-polar, non-aqueous suspensions. Int. J. Pharm, 1992, 83, 163-170.

97. Ranucci J.A., Dixit S., Bray Jr. R.N., Goldman D. Application of controlled flocculation to metered dose aerosol suspensions. Pharm Technol, 1990, 68-74.

98. Bower C., Washington C., Purewal T.S. Characterization of surfactant effect on aggregates in model aerosol suspension systems. J. Pharm Pharmacol, 1996, 48, 337-341.

99. Blackett P.M., Buckton G.A. A microcalorimetric investigation of the interaction of surfactants with crystalline and partially crystalline salbutamol sulphate in a model inhalation aerosol system. Pharm Res, 1995 12, 1689-1693.

100. Eriksson P.M. Sandstrom K.B., Rosenholm J.B. The distribution of oleic acid between salbutamol base drug and different propellant blends. Pharm Res, 1995, 12, 715-719.

101. Brambilla G., Ganderton D., Garzia R., Lewis D., Meakin B., Ventura P. Modulation of aerosol clouds produced by pressurized inhalation aerosols’, Int. J. Pharm, 1999, 186, 53-61.

102. Dalby R.N., Byron P.R. Comparison of output particle size distributions from pressurized aerosols formulated as solutions or suspensions. Pharm Res, 1988, 36-39.

103. Evans R.M., Farr S.J., Armstrong N.A., Chatham, S.M. Formulation and in vitro evaluation of pressurized inhalation aerosols containing isotropic systems of lecithin and water. Pharm Res, 1991, 8, 629-635.

104. Steytler D.C., Thorpe M., et al. Langmuir, 2003, 19, 8715-8720.

105. Patel N., Marlow M, et al. J. Colloid Interface Sci, 2003, 258, 345-353.

106. Patel N, Marlow M, et al. J. Colloid Interface Sci, 2003, 258, 354-362.

107. Meakin B.J, Lewis D.A., et al. 2003. Solubilisation of drugs in HFA propellant by means of emulsions. Patent EP1369113, 2003.

108. Selvam P., Peguin R.P.S., Chokshi U., da Rocha S R P, ‘Surfactant Design for the 1,1,1,2-tetrafluoroethane-water interface: ab initio calculations and in situ high pressure tensiometry’, Langmuir, 2006, 22, 8675-8683.

109. Wu L., da Rocha R.P. Biocompatible and biodegradable copolymer stabilizers for hydrofluoroalkane dispersions: a colloidal probe microscopy investigation. Langmuir, 2007, 23, 12104-12110.

110. Nyambura B.K., Kellaway I.W., Taylor K.M.C. The processing of nanoparticles containing proteins for suspension in hydrofluoroalkane propellants. Int J Pharm, 2009b 372, 140-146.

111. Nyambura B.K., Kellaway I.W., Taylor K.M.G. Insulin nanoparticles: stability and aerosolization from pressurized metered dose inhalers’, Int. J. Pharm, 2009, 375, 114-122.

112. Tan Y., Yang Z., Peng X., Xin F., Xu Y., Feng M., Zhao C., Hu Haiyan, Wu C. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int. J. Pharm, 2011, 413, 167-173.

113. Bharatwaj B. Wu L., Whittum-Hudson J.A., da Rocha S.R.P. The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of chlamydial respiratory infections. Biomaterials, 2010, 31, 7376-7385.

114. Nyambura B.K., Kellaway I.W., Taylor, K.M. G. Formulations for delivery via pressurized metered dose inhalers comprising an essential oil as suspension stabilizer. Patent Pub., No. WO/2008/05320.

115. Adams T.B., Cohen S.M., Doull J., Feron V.J., Goodman J.I., Marnett L.J., Munro, I.C., Portoghese P.S., Smith R.L., Waddell W.J., Wagner B.M. The FEMA GRAS assessment of cinnamyl derivatives used as flavour ingredients’, Food Chem Toxicol, 2004, 42, 157-185.

116.Jorgensen L., Vermehren C., Bjerregaard S., Froekjaer S. Secondary structure alterations in insulin and growth hormone water-in-oil emulsions, Int. J. Pharm, 2003 254, 7-10.

117. Bam N.B., Cleland J.L., Yang J., Manning M.C., Carpenter J.F., Kelley R.F., Randolph T.W. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J. Pharm Sci, 1998 87, 1554-1559.

118. Nagendra H.G., Sukumar N., Vijayan M. Role of water in plasticity, stability and action of proteins: the crystal structures of lysozyme at very low levels of hydration. Proteins: Struct. Funct. Genet, 1998 32, 229-240.

119. Weers J., Tarara T.E., Gill H., Weers J.G., Dellamary L.A. Homodispersion technology for HFA suspensions-particle engineering to reduce reduce dosing variance’, in Dalby R N, Byron P R, Peart J, Farr, S J, Respiratory Drug Delivery VII, Raleigh, Serentec Press, 2006, 91-97.

120. Weers J. Dispersible Powders for inhalation applications. Innov Pharm Tech, 2000, 1, 111-116.

121. Hirst P.H., Pitcairn G.R., Weers J.G., Tarara T.E., Clark A.R., Dellamary L.A., Hall G., Schorr J., Newman, ‘In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler’, Pharm Res, 2002, 19, 258-264.

122. Tarara T.E., Hartman M.S., Gill H., Kennedy A.A., Weers J.G. Characterisation of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a’, Pharm Res, 2004, 9, 1607-1614.

123. Dunbar C., Hickey A.J., Holzner P. Dispersion and characterization of pharmaceutical dry powders. KONA, 1988, 16, 7-45.

Downloads

Published

2012-11-15

How to Cite

Toon, R. C., Preedy, E. C., & Prokopovich, P. (2012). Formulating Drugs for Inhalers and Stability Issues. Eurasian Chemico-Technological Journal, 14(4), 271–286. https://doi.org/10.18321/ectj124

Issue

Section

Articles