The Quantitative Theory of Diffraction by Spiral Nanotubes
DOI:
https://doi.org/10.18321/ectj125Abstract
The quantitative theory of diffraction by spiral nanotubes of any chemical composition is offered. Distribution of diffraction intensities along layer lines and layer planes, strong and diffuse reflexes, pseudoorthogonality effect has been simulated and analyzed. The investigation is oriented to electron microdiffraction from a single nanotube.
References
1. I.K. Nasyrov, D.M. Pashin, Z.Ya. Khalitov, D.N. Valeeva. Structure of chiral and spiral nanotubes of arbitrary composition. Scientific Israel - Technological Advantages, vol. 12, 3, 2010, p. 63-73.
2. H. Jagodzinski, G. Kunze. The rolled structure of chrysotile. I-III // News Jb. Mineral. Mh. - 1954. - p. 95-150.
3. E.J.W. Whittaker The diffraction of X-rays by a cylindrical lattice. III. Acta Cryst., 8, 1955, p. 265-271.
4. E. Galimov, Z. Khalitov. Simulation of Diffraction by Nanotubes, The Publishing House of Kazan State Technical University, Kazan 2007 (in Russian).
5. G. Radovsky, R. Popovitz-Biro, M. Staiger, K. Gartsman, C. Thomsen, T. Lorenz, G. Seifert, R. Tenne, Angew. Chem, Intl. Ed. 50 (51), 12316-12320, (2011).
6. O. Figovsky, D. Pashin, I. Nasyrov, Z. Khalitov, D. Valeeva. The peculiarities of diffraction by non-chiral nanotubes. Chemistry & Chemical Technology, vol. 6, 1, 2011, p. 43-49.
7. O. Figovsky, D. Pashin, Z. Khalitov, D. Valeeva. The structure and diffraction by chiral nanotubes of arbitrary composition. Chemistry & Chemical Technology, vol. 6, 2, 2012, p. 167-177.
8. G. Gricaenko ,B. Zviagin, R. Boiarskaia et al. Methods of Electron Microscopy of Minerals, Nauka, Moscow 1969.
9. E.J.W. Wittaker. Structure of chrysotile. Y. Acta Cryst., 10, 1967, p. 149-156.
2. H. Jagodzinski, G. Kunze. The rolled structure of chrysotile. I-III // News Jb. Mineral. Mh. - 1954. - p. 95-150.
3. E.J.W. Whittaker The diffraction of X-rays by a cylindrical lattice. III. Acta Cryst., 8, 1955, p. 265-271.
4. E. Galimov, Z. Khalitov. Simulation of Diffraction by Nanotubes, The Publishing House of Kazan State Technical University, Kazan 2007 (in Russian).
5. G. Radovsky, R. Popovitz-Biro, M. Staiger, K. Gartsman, C. Thomsen, T. Lorenz, G. Seifert, R. Tenne, Angew. Chem, Intl. Ed. 50 (51), 12316-12320, (2011).
6. O. Figovsky, D. Pashin, I. Nasyrov, Z. Khalitov, D. Valeeva. The peculiarities of diffraction by non-chiral nanotubes. Chemistry & Chemical Technology, vol. 6, 1, 2011, p. 43-49.
7. O. Figovsky, D. Pashin, Z. Khalitov, D. Valeeva. The structure and diffraction by chiral nanotubes of arbitrary composition. Chemistry & Chemical Technology, vol. 6, 2, 2012, p. 167-177.
8. G. Gricaenko ,B. Zviagin, R. Boiarskaia et al. Methods of Electron Microscopy of Minerals, Nauka, Moscow 1969.
9. E.J.W. Wittaker. Structure of chrysotile. Y. Acta Cryst., 10, 1967, p. 149-156.
Downloads
Published
15-11-2012
How to Cite
Figovsky, O., Pashin, D., Khalitov, Z., & Valeeva, D. (2012). The Quantitative Theory of Diffraction by Spiral Nanotubes. Eurasian Chemico-Technological Journal, 14(4), 287–297. https://doi.org/10.18321/ectj125
Issue
Section
Article