Chemomagnetic Measurements of Electric Signals in Combustion Reactions of “Metal-Oxide”
DOI:
https://doi.org/10.18321/ectj87Abstract
The affect of an external magnetic field of 0.2 T on the Self-propagating High-temperature Syntheses (SHS) of a mixture of first row transition metals (Fe, Co, Ni, Mn and Ti) and their oxides (Fe3O4, Co3O4, NiO, MnO and TiO2) with solid oxidizer (NaClO4) was studied for the first time with respect to the chemomagnetic signals generated of each system during the transformations in the combustion wave under different external conditions. Reactions were carried out in zero and an applied magnetic field of 0.2 T and effect of magnetic fields on the combustion wave propagation were also studied.
References
2. A.G. Merzhanov, Ceram. Int., 1995, 21, 371-379.
3. I.P. Parkin, Chem. & Industry, 1997, 18, 725-728.
4. E.G. Gillan and R.B. Kaner, Chem. Mater., 1996, 8, 333-343.
5. A.G. Merzhanov, Adv. Mater., 1990, 2, 570- 572.
6. A.G. Merzhanov, Adv. Mater., 1992, 4, 294- 295; I.P. Parkin, M.V. Kuznetsov and Q.A. Pankhurst, J. Mater. Chem., 1999, 9, 273-281.
7. M. Faraday, The Philosoph. Mag. Ser. 3, 1847, 31, 401.
8. N.I. Wakayama and S. Sugie, Physica B, 1996, 216, 403-405.
9. Q.A. Pankhurst and I. P. Parkin, Chemical Reactions in Applied Magnetic Fields. In Magnetism: Molecules to Materials IV, Joel S. Miller, M. D. e., Ed., USA, Wiley-VCH, 2002, 467-479.
10. J.M. D. Coey, G. Hinds, and M. E. G. Lyons, Europhys. Lett., 1999, 47, 267-272.
11. G. Hinds, J.M. D. Coey, and M. E. G. Lyons, J. Appl. Phys., 1998, 83, 6447-6449.
12. H.C. Yi and J.J. Moore, J. Mater. Sci., 1990, 25, 1159-1168; M.V. Kuznetsov, Q.A. Pankhurst and I.P. Parkin, J. Phys. D. Appl. Phys., 1998, 31, 2886-2893.
13. A.I. Kirdyashkin, Y.M. Maksimov, and A.G. Merzhanov, Combustion Explosion and Shock Waves, 1986, 22, 700-706.
14. M.V. Kuznetsov, Q.A. Pankhurst, and I.P. Parkin, J. Mater. Chem., 1998, 8, 2701-2706.
15. I.P. Parkin, Q.A. Pankhurst, L. Affleck, M.D. Aguas, and M.V. Kuznetsov, J. Mater. Chem., 2001, 11, 193-199.
16. A.I. Kirdyashkin, Y.M. Maksimov, V.D. Kitler, O.K. Lepakova, V.V. Burkin, and S. V. Sinyaev, Combustion Explosion and Shock Waves, 1999, 35, 271-274.
17. Yu.G. Morozov, Russ J. Inorg. Mater., 1999, 35, 400-401; W. B. Cross, L. Affleck, M. V. Kuznetsov, I. P. Parkin and Q. A. Pankhurst, J. Mater. Chem., 1999, 9, 2545-2552.
18. Yu.G. Morozov and M.V. Kuznetsov, Combustion Explosion and Shock Waves, 1999, 35, 18-22; L. Affleck, M. D. Aguas, I. P. Parkin, Q. A. Pankhurst and M. V. Kuznetsov, J. Mater. Chem., 2000, 10, 1925-1932.
19. K.S. Martirosyan, I.A. Filimonov, and D. Luss, AICHE J., 2004, 50, 241-248.
20. A.P. Boronin, V.N. Kapinos, S.A. Krenev, and V.N. Mineev, Combustion Explosion and Shock Waves, 1990, 26, 597-602; A. P. Boronin, Yu. A. Medvedev, and B. M. Stepanov, Dokladi Akademii Nauk USSR, 1972, 206, 580-&.
21. Yu. G.Morozov, Chem. Phys. Rep., 1999, 17,2163-2166.
22. M.V. Kuznetsov, Q.A. Pankhurst, I.P. Parkin, L. Affleck and Yu.G. Morozov, J. Mater. Chem., 2000, 10, 755-760.
23. P.B. Avakyan, M.D. Nersesyan, and A.G. Merzhanov, Amer. Ceram. Soc. Bull., 1996, 75, 50; M. V. Kuznetsov and I. P. Parkin, Mater. Sci. Forum, 2000, 321-324, 779-785.
24. Yu.G. Morozov, M.V. Kuznetsov, M.D. Nersesyan, and A.G. Merzhanov, Doklady Physical Chemistry, 1996, 351, 780-782.
25. M.D. Nersesyan, J.T. Ritchie, I.A. Filimonov, J.T. Richardson, and D. Luss, J. Electrochem. Soc., 2002, 149, J11-J17.
26. K.S. Martirosyan, P.B. Avakyan, and M.D. Nersesyan, Int. J. SHS, 2001, 10, 193.
27. Yu.G. Morozov, M.V. Kuznetsov and O. V. Belousova, Russ. J. Phys. Chem. B, 2009, 3, 807-812.
28. J.P. Wikswo, IEEE Trans. Appl. Superconductivity, 1995, 5, 74-120.
29. B.D. Jette and M.L. MacVicar, IEEE Trans. Magn., 1991, 27, 3025-3028.
30. A. Abedi, J.J. Fellenstein, A.J. Lucas, and J.P. Wikswo, Rev. Sci. Instr., 1999, 70, 4640-4651.
31. Yu.G. Morozov, M.V. Kuznetsov, and A.G. Merzhanov, Int. J. SHS, 1997, 6, 1-14.
32. Yu.G. Morozov and M.V. Kuznetsov, High Temp., 1998, 36, 319-320.
33. Yu.M. Grigor'ev and A.A. Sarkisyan, Combustion, Explosion and Shock Waves, 1978, 14, 767.
34. M.D. Nersesyan, J.R. Claycomb, J.T. Ritchie, J.H. Miller, J.T. Richardson, and D. Luss, J.Mater. Synth. Process., 2001, 9, 63-72.
35. M.D. Nersesyan, D. Luss, J.R. Claycomb, J.T. Ritchie and J.H. Miller, Combustion Sci. Technol., 2001, 169, 89-106.
36. K.S. Martirosyan, J.R. Calycomb, G. Gogoshin, R.A. Yarbrough, J.H. Miller, and D. Luss, J. Appl. Phys., 2003, 93, 9329-9335.
37. H. Spiers, Time resolved X-ray Diffraction and Thermal Imaging Studies of Magnesium Zinc Ferrites, Ph.D Thesis, UCL, London, UK, 2004.
38. F. Charlot, F. Bernard, E. Gaffet, D. Klein, and J.C. Niepce, Acta Mater., 1999, 47, 619-629.
39. V.V. Golovko, S.V. Kozitskii, and A.V. Florko, Combustion Explosion Shock Waves, 1985, 21, 405-409.
40. K.S. Martirosyan, I.A. Filimonov, M.D. Nersesyan, and D. Luss, J. Electrochem. Soc., 2003, 150, J9-J16.
41. M.V. Kuznetsov, I.P. Parkin, Yu. G. Morozov and A.G. Merzhanov, Eur. Chem.- Technol. J., 2002, 4, 73-86.
42. Q. Ming, M.D. Nersesyan, K. Ross, J.T. Richardson, and D. Luss, Combustion Sci. Technol., 1997, 128, 279-294.