Reactions of Chlorine Dioxide with Organic Compounds

Authors

  • I. M. Ganiev Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 71, Oktyabrya ave., 450054 Ufa, Russia
  • Q. K. Timergazin Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 71, Oktyabrya ave., 450054 Ufa, Russia
  • N. N. Kabalnova Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 71, Oktyabrya ave., 450054 Ufa, Russia
  • V. V. Shereshovets Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 71, Oktyabrya ave., 450054 Ufa, Russia
  • G. A. Tolstikov Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Lavrentieva ave., 9, Novosibirsk, 630090, Russia

DOI:

https://doi.org/10.18321/ectj409

Abstract

Data on the reactivity of chlorine dioxide with organic compounds from various classes are summarized.
Early investigations of the reactions of chlorine dioxide were occurred in aqueous or predominantly aqueous
solutions in general, because it used in drinking water treatment and in industry as bleaching agent. However, chlorine dioxide was not used widely as reagent in organic synthesis. In last decades the number of publications on the studying interaction of the chlorine dioxide in organic medium increased. In table presented the rate constants reactions of chlorine dioxide with organic compounds published through 2004. Most of the rate constants were determined spectrophotometrically by decay kinetics of chlorine dioxide at 360 nm. Chlorine dioxide may be used for oxidation of organic compounds, because chlorine dioxide is enough reactive and selective as an oxidant with a wide range of organic compounds based on these reaction rate constants. But the application of chlorine dioxide as reagent in organic synthesis is restrained by the lack of data on the kinetics and mechanism of reactions involving chlorine dioxide, as well as data on the product yields and composition, temperature and solvent effects, and catalysts. The pathways of products formation and probable mechanisms of reactions are discussed in the review.

References

1. Biggs P., Canosa-Mas C.E., Fracheboud J.-M., Marston G., Shallcross D.E., Wayne R.P., J. Chem. Soc. Faraday Trans. 91, 3045-3054 (1995).

2. Masschelein W.J. Chlorine Dioxide: Chemistry and Enviromental Impact of Oxychlorine Compounds. Ann Arbor Publishers, Inc., Ann Arbor, 1979, p. 450.

3. Gordon G., Kieffer R.G., Rosenblatt D.H. The chemistry of chlorine dioxide. Wiley Interscience Publishers, New York, London, Sydney, Toronto, 1972, p. 45.

4. Rav-Acha C., Water Res. 18, 1329-1341 (1984).

5. Noack M.G., Iacovello S.A. The Chemistry of Chlorine Dioxide in Industrial and Wastewater Treatment Applications. Technomic Publishing Co., Lancaster, 1994, p. 1-19.

6. Tymanova T.A. Fiziko-Khimicheskie Osnovy Otbelki Cellulozy (Physicochemical Principles of Cellulose Bleaching). Wood Industry, Moscow, 1984, p. 213.

7. Nikitin I.V. Khimia Kislorodnykh Soedinenii Galogenov (The Chemistry of Oxygen-Containing Halogen Compounds). Science, Moscow, 1986, p. 340.

8. Colussi A.J., Grela M.A., J. Phys. Chem. 97, 3775-3779 (1993).

9. Wayne R.P., Poulet G., Biggs P., Burrows J.P., Cox R.A., Curtzen P.J., Hayman G.D., Jekin M.E., Bras G.L., Moortgat G.K., Platt U., Schindler R.N., Atmospheric Environment 29, 2677-2881. (1995).

10. Luke B.T., J. Mol. Struct. (Theochem) 332, 283-289 (1995).

11. Flesch R., Ruhl E., Hottmann K., Baumgartel H., J. Phys. Chem. 97, 837-844 (1993).

12. Gilles M.K., Polak M.L., Lineberger W.C., J. Chem. Phys. 96, 8012 (1992).

13. Troitskaya N.V., Mishchenko K.R., Flis I.E., J. Phys. Chem. USSR 33, 1577 (1959).

14. Vandrkooi N., Poole T.R., Inorg. Chem. 5, 1351- 1354 (1966).

15. Sugihara H., Shimokoshi K., Yasumori I., J. Phys. Chem. 81, 669-673 (1977).

16. Shimokoshi K., Sugihara H., Yasumori I., J. Phys. Chem. 78, 1770-1771 (1974).

17. Nadolinnyi V.A., Makotchenko V.G., Danilenko A.M., J.Struct.Chem. 39, 204-211 (1998).

18. Rehr A., Jansen M., Angew. Chem. Int. Ed. Engl. 30, 1510-1512 (1991).

19. Rehr A., Jansen M., Inorg. Chem. 31, 4740-4742 (1992).

20. Miyazaki K., Tanoura M., Tanaka K., Tanaka T., J. Mol. Spectrosc. 116, 435-449 (1986).

21. Tanaka K., Tanaka T., J. Mol. Spectrosc. 98, 425- 452 (1983).

22. Ortigoso J., Escribano R., Burkholder J.B., Howard C.J., Lafferty W.J., J. Mol. Spectrosc. 148, 346-370 (1991).

23. Ortigoso J., Escribano R., Burkholder J.B., Howard C.J., Lafferty W.J., J. Mol. Spectrosc. 156, 89-97 (1992).

24. Ortigoso J., Escribano R., Burkholder J.B., Howard C.J., Lafferty W.J., J. Mol. Spectrosc. 155,25-43 (1992).

25. Ortigoso J., Escribano R., Burkholder J.B., Howard C.J., Lafferty W.J., J. Mol. Spectrosc. 158,343-356 (1993).

26. Peterson K.A., Werner H.J., J. Chem. Phys. 96, 8948-8961 (1992).

27. Peterson K.A., Werner H.J., J. Chem. Phys. 105, 9823-9832 (1996).

28. Peterson K.A., J. Chem. Phys. 109, 8864-8875 (1998).

29. Fangstrom T., Edvardsson D., Ericsson M., Lunell S., Enkvist C., Int. J. Quant. Chem. 66, 203-217 (1998).

30. Janoschek R., J. Mol. Struct. (Theochem) 423, 219-224 (1998).

31. Beltran A., Andres J., Noury S., Silvi B., J. Phys. Chem. A 103, 3078-3088 (1999).

32. Vaida V., Simon J.D., Science 268, 1443-1448 (1995).

33. Hoigne J., Tratnyek P.G., Water Res. 28, 57-66 (1994).

34. Choshen E., Elits R., Rav-Acha C., Tetrahedron Lett. 27, 5989-5992 (1986).

35. Rav-Acha C., Blits R., Water Res. 19, 1273-1281 (1985).

36. Rav-Acha C., Choshen E., Environ. Sci. Technol. 21, 1069-1074 (1987).

37. Hoigne J., Bader H., Vom Wasser 59, 253-267 (1982).

38. Sharma C.B., React. Kinet. Catal. Lett. 19, 167- 173 (1982).

39. Sharma C.B., React. Kinet. Catal. Lett. 28, 967- 975 (1983).

40. Suvorkina E.S. Ph.D.Dissertation IOCh URC RAS, Ufa, 2002, p. 135.

41. Merenyi G., Lind J., Eriksen T.E., J. Amer. Chem. Soc. 108, 7716-7726 (1986).

42. Kozlov Y.N., Purmal' A.P., Uskov A.M., Russ. J. Phys. Chem. 59, 930-932 (1985).

43. Kozlov Y.N., Russ.J.Phys.Chem.(Engl.Transl.) 68, 218-220. (1994).

44. Alfassi Z.B., Huie R.E., Neta P., J. Phys. Chem. 90, 4156-4158 (1986).

45. Wajon J.E., Rosenblatt D.H., Burrows E.P., Environ. Sci. Technol. 16, 396-402 (1982).

46. Huie R.E., Neta P., J. Phys. Chem. 90, 1193- 1198 (1986).

47. Ganiev I.M.,Ganieva E.S., Kabalnova N.N. Russ. Chem. Bull. 10, (2004).

48. Alfassi Z.B., Huie R.E., Neta P., Shoute L.C.T., J. Phys. Chem. 94, 8800-8805 (1990).

49. Neta P., Huie R.E., Ross A.B., J. Phys. Chem. Ref. Data 17, 1027-1284 (1988).

50. Ganiev I.M.,Suvorkina E.S., Kabalnova N.N. Russ. Chem. Bull. 52, No. 5, 1123-1128 (2003).

51. Eriksen T.E., Lind J., Merenyi G., J. Chem. Soc., Faraday Trans. 1 77, 2137-2148 (1981).

52. Rosenblatt D.H., Hull L.A., De Luca D.C., Davis G.T., Weglein R.C., Williams H.K.R., J. Amer. Chem. Soc. 89, 1158-1163 (1967).

53. Hull L.A., Davis G.T., Rosenblatt D.H., Williams H.K.R., Weglein R.C., J. Amer. Chem. Soc. 89, 1163-1170 (1967).

54. Golubev V.A., Kozlov Y.N., Petrov A.N., Purmal A.P., Travina O.A., Russ. J. Phys. Chem. 60, 627- 628 (1986).

55. Davis G.T., Demek M.M., Rosenblatt D.H., J. Amer. Chem. Soc. 94, 3321-3325 (1972).

56. Benitez F.J., Beltran-Heredia J., Gonzalez T., Lara P., J. Environ. Sci. Health, Part A A27, 643-662 (1992).

57. Shen X., Lind J., Merenyi G., J. Phys. Chem. 91, 4403-4406 (1987).

58. Rosenblatt D.H., Hayes A.J., Jr., Harrison B.L., Streaty R.A., Moore K.A., J. Org. Chem. 28,2790-2794 (1963).

59. Merenyi G., Lind J., Shen X., Eriksen T.E., J. Phys. Chem. 94, 748-752 (1990).

60. Eriksen T.E., Lind J., Merenyi G., J. Chem. Soc., Faraday Trans. 1 77, 2125-2135 (1981).

61. Alfassi Z.B., Radiat. Phys. Chem. 29, 405-406 (1987).

62. Kabalnova N.N., Rolnik L.Z., Yagafarova G.G., Shereshovets V.V., Russ. Chem. Bull. 8, (2004).

63. Yakupov M.Z., Shereshovets V.V., Imashev U.B., Ismagilov F.R., Russ. Chem. Bull. 50, No.12, 2352-2355 (2001).

64. Woodward E.R., Chem. Abstr., (1951).

65. Jalowiczor J., Zesz. Nauk. Politech. Szczecin., Chem. 8, 105-115 (1968).

66. Jalowiczor J., Zesz. Nauk. Politech. Szczecin., Chem. 8, 117-123 (1968).

67. Lindgren B.O., Svan C.M., Widmark G., Acta Chem. Scand. 19, 7-13 (1965).

68. Fredricks P.S., Lindgren B.O., Theander O., Acta Chem. Scand. 24, 736 (1970).

69. Lindgren B.O., Svan C.M., Acta Chem. Scand. 20, 211-218 (1966).

70. Lindgren B.O., Nlsson T., Acta Chem. Scand. B 28, 847-852 (1974).

71. Rav-Acha C., Choshen E., Sarel S., Helv. Chim. Acta 69, 1728-1733 (1986).

72. Timerghazin Q.K. Ph.D. Dissertation. IOCh URC RAS, Ufa, 2000, p. 156.

73. Merkel T., Maier M., Sacher F., Maier D., Aqua 46, 289-303 (1997).

74. Paluch K., Otto J., Starski R., Roczniki Chem 48, 1453-1457 (1974).

75. Paluch K., Jagielski J., Zesz. Nauk. Politech. Szczecin., Chem. 113-120 (1972).

76. Handoo K.L., Handoo S.K., Gadru K., Kaul A., Tetraheron Lett. 26, 1765-1768 (1985).

77. Sokolov V.I., Bashilov V.V., Timerghazin Q.K., Avzyanova E.V., Khalizov A.F., Shishlov N.M., Shereshovets V.V., Mendeleev Comm. 54-55 (1999).

78. Ganiev I.M. Ph.D. Dissertation. IOCh URC RAS, Ufa, 2001, p. 140.

79. Kudesia V.P., Sharma C.B., Rev. Roum. Chim. 28, 263-266 (1983).

80. Kutchin A.V., Frolova L.L., Dreval I.V., Russ. Chem.Bl. 45, 1781-1782. (1996).

81. Svenson D., Chang H.M., Jameel H. Canadian Journal of Chemistry-Revue Canadienne de Chimie.
106, No. 36, 8386-8390 (2002).

82. Abushakhmina G.M., Khalizov A.F., Zlotskii S.S., Shereshovets V.V., Imashev U.B., React. Kinet. Catal. Lett. 70, 177-182 (2000).

83. Tahistov V.V. Organicheskaya Mass-Spektrometriya (Organic Mass-Spectrometry). Science, Saint-Petersburg, 1990, p. 101.

84. Otto J., Paluch K., Roczniki Chem. 39, 1711- 1712 (1965).

85. Somsen R.A., Tappi 43, 154-160 (1960).

86. Kastner Y.R., Das K.C., Hu C., Mellendon R. J.of the air. Waste managenent accociation, 37, No. 18, 4533-4543 (2003).

87. Gordon A.J., Ford R.A. The chemist's companion. A handbook of practical data, techniques,and references. A Wiley - Interscience publication. John Wiley and sons, New York-LondonSydney-Toronto, 1972, p. 542.

88. Glabisz U., Chem. Stosow., Ser. A 10, 211-220 (1966).

89. Glabisz U., Chem. Stosow., Ser. A 10, 221-227 (1966).

90. Ben Lamor H., De Laat J., Dore M., Water Res. 1545 (1984).

91. Lindgren B.O., Ericsson B., Acta Chem. Scand. 23, 3451-3460 (1969).

92. Grimley E., Gordon G., J. Inorg. Nucl. Chem. 35, 2383-2392 (1973).

93. Tratnyek P.G., Hoigne J., Water Res. 28, 57-66 (1994).

94. Kutchin A.V., Rubcova S.A., Karmanova L.P., Sybbotina S.N., Loginova I.V., Russ. Chem. Bull. 47, 2051 (1998).

95. Kutchin A.V., Rubcova S.A., Sybbotina S.N., Loginova I.V., Zhurnal organicheskoi khimii 36, 1873-1874 (2000).

96. Yakupov M.Z., Shishlov N.M., Shereshovets V.V., Imashev U.B., Pet.Chem.USSR (Engl.Transl.) 41, 48-49 (2001).

97. Ulendeeva A.D., Nikitina T.C., Baeva L.A., Lyapina N.K. Petroleum Chemistry, 50, No. 12, 2352-2355 (2001).

98. Dennis W.H., Hull L.A., Rosenblatt D.H., J. Org. Chem. 32, 3783-3787 (1967).

99. Hull L.A., Davis G.T., Rosenblatt D.H., Mann C.K., J. Phys. Chem. 73, 2142-2146 (1969).

100. Hull L.A., Giordano W.P., Rosenblatt D.H., Davis G.T., Mann C.K., Milliken S.B., J. Phys. Chem. 73, 2147-2152 (1969).

101. Hull L.A., Davis G.T., Rosenblatt D.H., J. Amer. Chem. Soc. 91, 6247-6250 (1969).

102. Chen C.K., Hortmann A.G., Marzabadi M.R., J. Amer. Chem. Soc. 110, 4829-4831 (1988).

103. Ganiev I.M., Timerghazin Q.K., Shereshovets V.V., Grigor'ev A.I., Tolstikov G.A., Russ. Chem. Bull. 50, (2001).

104. Hoffmann R.W. Aufklarung von reaktionsmechanismen. Georg Thieme Verlag, Stuttgart, 1976, p. 304.

105. de Nooy A.E.J., Besemer A.C., van Bekkum H., Synthesis 1153-1174 (1996).

Downloads

Published

2005-01-20

How to Cite

Ganiev, I. M., Timergazin, Q. K., Kabalnova, N. N., Shereshovets, V. V., & Tolstikov, G. A. (2005). Reactions of Chlorine Dioxide with Organic Compounds. Eurasian Chemico-Technological Journal, 7(1), 1–31. https://doi.org/10.18321/ectj409

Issue

Section

Articles