Structural Properties and Catalytic Behaviour of CrOx/TiO2 Systems
DOI:
https://doi.org/10.18321/ectj595Abstract
The present investigation comprises of an attempt to investigate the titania supported chromia catalysts using X-ray diffraction measurements (XRD), evolved gas analysis (EGA), FT infrared spectroscopy (FTIR)
and FT-Raman spectroscopic techniques with catalytic evaluation by dehydrogenation of cyclohexane. Evolved Gas Analysis shows a modified decomposition pattern than that of bulk chromia and presence of
surface heterogeneity owing to the modified surface anchored chromia species formed as a result of interaction between chromia and titania. Above 773 K, Cr6+ is not stable over TiO2 surface and the reduction of the Cr6+ to intermediate chemical states take place. XRD investigations illustrate the significance of X-ray source in examining supported chromia catalysts to study the morphological modifications of the active phase when crystalline supports are employed. FT Raman spectra reveals that on calcining the sample at 573 K, for 2 hours, the chromia phase assumes a monomerically anchored molecular state. Longer calcination time (6 hours) at the same temperature, leads to the diffusion of in situ formed Cr3+ ions into the anatase lattice. On calcination at 973 K for 6 hours, amorphous chromia phase is no more stable on TiO2 support resulting in agglomeration leading to the germination of microcrystalline α–Cr2O3. Evaluation of catalytic performance of above catalysts by dehydrogenation of cyclohexane confirms the fact that diffusion of part of Cr3+ species into the bulk of anatase phase occurs under reaction conditions.
References
(2). J. P. Hogan, J. Polymer Sci. A-1, 8, (1970) 2637.
(3). O. Glemser, U. Hauschild and F. Trupel, Z. anorg. allg. chem, 277, (1954) 113.
(4). M .A. Mosesman, J. Am. Chem. Soc., 76, (1954) 295.
(5). C.S. Kim and S.I. Woo, J. Mol. Catal., 73, (1992) 249.
(6). W. Hill and G. Ohlmann, React. Kinet. Catal. Lett., 38(2), (1989) 289.
(7). V.J. Ruddick, P.W. Dyer, G. Bell, V.C. Gibson and J.P.S. Badyal, J.Phys.Chem. 100 (1996) 11062.
(8). M. Del Arco, J. Catal. 113, (1988) 120.
(9). K. Kohler, M. Maciejewski, H. Schneider and A. Baiker, J. Catal., 157, (1995) 301.
(10). J. Engweiler, J. Nickl, A. Baiker, K. Kohler, C.W. Schlapfer and A. Von Zelewsky, J. Catal., 145 (1994) 141.
(11). B.M. Weckhuysen, I.E. Wachs and R.A. Schoonheydt, Chem. Rev., 96 (1996) 3327.
(12). F. Cavani, M. Koutyrev, F. Trifiro, A. Bartolini, D. Ghisletti, R. Iezzi, A. Santucci and G. D. Piero, J.Catal., 158 (1996) 236.
(13). G. Ghiotti, A. Chiorino and F. Boccuzzi, Surf. Sci., 251/252 (1991) 1100.
(14). R.P. Viswanath, P. Wilson, P. Madhusudhan Rao and A. Mahajabeen, Recent trends in catalysis,V. Murugesan, B. Arabindoo and M. Palanichamy (Eds), Narosa Publications, India, 1999, p 142.
(15). R.P. Viswanath and P. Wilson Appl., Catal A: General 201 (2000) 23.
(16). Wilson, P., and R.P. Viswanath (2002) Eurasian ChemTech Journal 4, 201 (2002).
(17). Wilson, P., P. Madhusudhan Rao and R.P. Viswanath (2001) Thermochimica Acta 399 (2003) 109.
(18). M. Schraml Marth, A. Wokaun, H.E. Curry-Hyde and A. Baiker, J. Catal., 133 (1992) 415.
(19). J. Rouquerol, Thermochim. Acta., 300, (1997) 247.
(20). M.A. Vuurman and I.E. Wachs, J. Phys. Chem., 96 (12), (1992) 5008.
(21). S. Haukka, Analyst, 116 (1991) 1055.
(22). M.A. Mosesman, J. Am. Chem. Soc. (1954) 76, 295.
(23). Zecchina, C. Morterra, G. Ghiotti and E. Borello, J. Phys. Chem., 73, (1969) 1292.
(24). U. Scharf, H. Schneider, A. Baiker and A. Wokaun, J. Catal. 145, (1994) 464.
(25). P. Ratnasamy and J. Leonard., J. Phys. Chem., 76 (13), (1972) 1838.
(26). A. Amorelli, J.C. Evans, C.C. Rowlands and T.A. Egerton, J. Chem. Soc., Faraday Trans. I, 83 (12), (1987) 3541.
(27). M.I. Martin, V. Rives, L. Palmisano and M. Schiavello, J. Catal. 134, (1992) 434.
(28). A. M. Venezia, L. Palmisano, M. Schiavello, M.I. Martin and V. Rives J. Catal 147 (1994) 115.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.