Structural Properties and Catalytic Behaviour of CrOx/TiO2 Systems

Authors

  • P. Wilson Department of Chemistry, Madras Christian College, Tambaram, Chennai 6000 059, Tamilnadu, India
  • P. M. Rao Blechner center for Industrial Catalysis and Process Development, Ben-Gurion University, Beersheva, Israel; Department of Chemistry, Madras Christian College, Tambaram, Chennai 6000 059, Tamilnadu, India
  • R. P. Viswanath Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

DOI:

https://doi.org/10.18321/ectj595

Abstract

The present investigation comprises of an attempt to investigate the titania supported chromia catalysts using X-ray diffraction measurements (XRD), evolved gas analysis (EGA), FT infrared spectroscopy (FTIR)
and FT-Raman spectroscopic techniques with catalytic evaluation by dehydrogenation of cyclohexane. Evolved Gas Analysis shows a modified decomposition pattern than that of bulk chromia and presence of
surface heterogeneity owing to the modified surface anchored chromia species formed as a result of interaction between chromia and titania. Above 773 K, Cr6+ is not stable over TiO2 surface and the reduction of the Cr6+ to intermediate chemical states take place. XRD investigations illustrate the significance of X-ray source in examining supported chromia catalysts to study the morphological modifications of the active phase when crystalline supports are employed. FT Raman spectra reveals that on calcining the sample at 573 K, for 2 hours, the chromia phase assumes a monomerically anchored molecular state. Longer calcination time (6 hours) at the same temperature, leads to the diffusion of in situ formed Cr3+ ions into the anatase lattice. On calcination at 973 K for 6 hours, amorphous chromia phase is no more stable on TiO2 support resulting in agglomeration leading to the germination of microcrystalline α–Cr2O3. Evaluation of catalytic performance of above catalysts by dehydrogenation of cyclohexane confirms the fact that diffusion of part of Cr3+ species into the bulk of anatase phase occurs under reaction conditions.

References

(1). F.D. Hardcasle and I.E. Wachs, J. Mol. Catal 46, (1988) 173.

(2). J. P. Hogan, J. Polymer Sci. A-1, 8, (1970) 2637.

(3). O. Glemser, U. Hauschild and F. Trupel, Z. anorg. allg. chem, 277, (1954) 113.

(4). M .A. Mosesman, J. Am. Chem. Soc., 76, (1954) 295.

(5). C.S. Kim and S.I. Woo, J. Mol. Catal., 73, (1992) 249.

(6). W. Hill and G. Ohlmann, React. Kinet. Catal. Lett., 38(2), (1989) 289.

(7). V.J. Ruddick, P.W. Dyer, G. Bell, V.C. Gibson and J.P.S. Badyal, J.Phys.Chem. 100 (1996) 11062.

(8). M. Del Arco, J. Catal. 113, (1988) 120.

(9). K. Kohler, M. Maciejewski, H. Schneider and A. Baiker, J. Catal., 157, (1995) 301.

(10). J. Engweiler, J. Nickl, A. Baiker, K. Kohler, C.W. Schlapfer and A. Von Zelewsky, J. Catal., 145 (1994) 141.

(11). B.M. Weckhuysen, I.E. Wachs and R.A. Schoonheydt, Chem. Rev., 96 (1996) 3327.

(12). F. Cavani, M. Koutyrev, F. Trifiro, A. Bartolini, D. Ghisletti, R. Iezzi, A. Santucci and G. D. Piero, J.Catal., 158 (1996) 236.

(13). G. Ghiotti, A. Chiorino and F. Boccuzzi, Surf. Sci., 251/252 (1991) 1100.

(14). R.P. Viswanath, P. Wilson, P. Madhusudhan Rao and A. Mahajabeen, Recent trends in catalysis,V. Murugesan, B. Arabindoo and M. Palanichamy (Eds), Narosa Publications, India, 1999, p 142.

(15). R.P. Viswanath and P. Wilson Appl., Catal A: General 201 (2000) 23.

(16). Wilson, P., and R.P. Viswanath (2002) Eurasian ChemTech Journal 4, 201 (2002).

(17). Wilson, P., P. Madhusudhan Rao and R.P. Viswanath (2001) Thermochimica Acta 399 (2003) 109.

(18). M. Schraml Marth, A. Wokaun, H.E. Curry-Hyde and A. Baiker, J. Catal., 133 (1992) 415.

(19). J. Rouquerol, Thermochim. Acta., 300, (1997) 247.

(20). M.A. Vuurman and I.E. Wachs, J. Phys. Chem., 96 (12), (1992) 5008.

(21). S. Haukka, Analyst, 116 (1991) 1055.

(22). M.A. Mosesman, J. Am. Chem. Soc. (1954) 76, 295.

(23). Zecchina, C. Morterra, G. Ghiotti and E. Borello, J. Phys. Chem., 73, (1969) 1292.

(24). U. Scharf, H. Schneider, A. Baiker and A. Wokaun, J. Catal. 145, (1994) 464.

(25). P. Ratnasamy and J. Leonard., J. Phys. Chem., 76 (13), (1972) 1838.

(26). A. Amorelli, J.C. Evans, C.C. Rowlands and T.A. Egerton, J. Chem. Soc., Faraday Trans. I, 83 (12), (1987) 3541.

(27). M.I. Martin, V. Rives, L. Palmisano and M. Schiavello, J. Catal. 134, (1992) 434.

(28). A. M. Venezia, L. Palmisano, M. Schiavello, M.I. Martin and V. Rives J. Catal 147 (1994) 115.

Downloads

Published

2004-06-28

How to Cite

Wilson, P., Rao, P. M., & Viswanath, R. P. (2004). Structural Properties and Catalytic Behaviour of CrOx/TiO2 Systems. Eurasian Chemico-Technological Journal, 6(2), 79–90. https://doi.org/10.18321/ectj595

Issue

Section

Articles