The Use of C2–C5 Hydrocarbons for Production of Gasoline Components
DOI:
https://doi.org/10.18321/ectj617Abstract
A conversion of light hydrocarbons (C2–C5) over HZSM-zeolite-containing catalysts modified by the VA Group metals was studied. The process was carried out in a flow reactor at varying temperature from 350 to 400 °C, pressure – 0.1-0.5 MPa and space velocity – 100-300 hr-1. It was observed that catalysts had high activity in the process of interaction between pentane and ethylene at temperature 350-400 °C and P = 0.1 MPa. The conversion of pentane and ethylene at these conditions over the catalyst P-3 are > 98% and 99-100% respectively. The reaction products are C1–C4 alkanes, C3–C4 alkenes and C5+ hydrocarbons of normal and iso-structure, benzene, ethyl-benzene, xylene, toluene. Maximum yield of C5–C7 alkanes is 91.6% over P-2 and ethyl-benzene is 36.6% over P-3 catalyst observed at mild conditions T = 350 °C and P = 0.1 MPa. Yield of benzene is 1.3-1.4% that meets to environmental requirements. The composition of alkylation gasoline depends on the catalyst nature. Studied zeolite-containing catalysts are polyfunctional and carry out the reactions of dehydrogenation, isomerization, cyclization, alkylation and partly cracking of hydrocarbons by one step. The process scheme is presented.
References
(2). G.A. Olah, Friedel-Crafts chemistry, Wiley/Interscience, New York, London, 1973.
(3). R.J. Gillespie, T.E. Peel, Adv. Phys. Org. Chem. 1:9 (1972).
(4). G. Harvey, A. Vogt, H.W. Kouwenhoven, R. Prins, Proc. Int. Zeolite Conf. 2:363 (1992).
(5). A. Heidekum, M.A. Harmer and W.F. Hoelderich, J. Catal. 188:230 (1999).
(6). P. Laszlo, M.T. Montaufier, Tett. Lett. 1561: 32 (1991).
(7). G.D. Yadav and J.J. Nair, Microporous. Mesoporous Mater., 1:33 (1999).
(8). J. Kaur, K. Griffin, B. Harrison and I.V. Kozhevnikov, J. Catal. 448: 208 (2002).
(9). J. Kaur and I.V. Kozhevnikov, Chem. Comm., 2508, (2002).
(10). V.R. Choudhary, S.K. Jana, J. Mol. Catal. A: Chemical 267:180 (2002).
(11). V. R. Choudhary, S.K. Jana, P.S. Nilesh, Tett. Lett. 1105:43 (2002).
(12). V.R Choudhary, S.K. Jana, P.S. Nilesh, Catal. Lett., 235:76 (2001).
(13). C.G. Frost, J.P. Hartley and D. Griffin, Tett. Lett., 4789:43 (2002).
(14). W. Wang, C.L Chen, N.P. Xu, C.Y. Mou, Green Chem., 257:4 (2002).
(15). C. Hansch, A. Leo, R. Taft, Chem. Rev., 165:91 (1991).
(16). B.M. Choudary, M. Sateesh, M.L. Kantam, K.V. Ram Prasad, Appl. Catal 155:171 (1998).
(17). V.R. Choudhary, S.K. Jana, B.P. Kiran, Catal. Lett, 223: 64 (2000).
(18). C. Morterra, G. Cerrato, F. Pinna, M. Signoretto, J. Phys. Chem. 123:98 (1994).
(19). K. Biro, F. Figueras, C. Marquez Alvarez, S. Bekassy and J. Valyon, J. Thermal Analysis and Calorimetry 345:56 (1999).
(20). K. Arata, H. Nakamura and M. Shouji, Appl. Catal. A: General 213:197 (2000).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.