Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method

Authors

  • C. Yu Institute of Technical Thermodynamics, Karlsruhe Institute of Technology Germany
  • F. Minuzzi Graduate Program in Applied Mathematics, Federal University of Rio Grande do Sul Brazil
  • U. Mass Institute of Technical Thermodynamics, Karlsruhe Institute of Technology Germany

DOI:

https://doi.org/10.18321/ectj705

Abstract

A hybrid RANS/Transported-PDF model for the simulation of turbulent reacting flows based on automatically reduced mechanisms for the chemical kinetics (reaction-diffusion manifold, REDIM) is presented in this work. For modelling of turbulent reacting flows, chemistry is a key problem and affects largely the accuracy. The PDF method has been widely used since the chemical source term is in a closed form, without any modelling. Despite of this advantage of PDF method, detailed chemical kinetics is not desired due to its heavy computational effort. From this aspect, the detailed chemical kinetics is simplified by the reaction-diffusion manifold (REDIM) method. The hybrid RANS/Transported-PDF model based on REDIM reduced kinetics is applied to simulate the Sandia piloted Flame E, which has a moderate degree of local extinction. The numerical results are validated through comparison with experimental data and show good qualitative and quantitative agreements.

References

(1). S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, U.K., 2000, 771 pp.

(2). J. Warnatz, U. Maas and R.W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin: Springer-Verlag, 2000.

(3). J. Fröhlich, Large eddy simulation turbulenter Strömungen, Wiesbaden: Teubner, 2006.

(4). D. Spalding, Symp. (Int.) Combust. 13 (1971) 649‒657. Crossref

(5). D. Spalding, Chem. Eng. Sci. 26 (1) (1971) 95‒107. Crossref

(6). S.B. Pope, Prog. Energ. Combust. 11 (2) (1985) 119‒192. Crossref

(7). D.C. Haworth, Prog. Energ. Combust. 36 (2) (2010) 168‒259. Crossref

(8). U. Maas and S.B. Pope, Combust. Flame 88 (3) (1992) 239‒264. Crossref

(9). T. Turanyi and A. S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, 2014. Crossref

(10). V. Bykov and U. Maas, Combust. Theor. Model. 11 (6) (2007) 839‒862. Crossref

(11). G. Steinhilber, Numerische Simulation turbulenter Verbrennungsprozesse mittels statistischer Verfahren und REDIM reduzierter Kinetik, Dissertation Karlsruhe: Karlsruhe Institute of Technology, 2015.

(12). C. Yu and U. Maas, “A hybrid RANS/ Transported-PDF Model for Simulation of Turbulent Flames based on generalized MMC and REDIM Method,” in Proc. 8th European Combustion Meeting, Dubrovnik, Croatia, April 18 - April 25, 2017.

(13). A. Neagos, Adaptive Generierung von Reaktions-Diffusions-Mannigfaltigkeiten für die reduzierte Beschreibung chemisch reagierender Strömungen, Diss. Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2017.

(14). H. Carlsson, R. Yu and X.-S. Bai, Int. J. Hydrogen Energ. 39 (35) (2014) 20216‒20232. Crossref

(15). R. Schießl, V. Bykov, U. Maas, A. Abdelsamie and D. Thévenin, P. Combust. Inst. 36 (1) (2017) 673‒679. Crossref

(16). R. Barlow and J. Frank, Symp. (Int.) Combust. 27 (1998) 1087‒1095. Crossref

(17). “International workshop on measurement and computation of turbulent nonpremixed flames,” [Online]. Available: http://www.sandia.gov/TNF/abstract.html. [Accessed 18 09 2014].

(18). F. Magagnato, “SPARC: Structured Parallel Research Code,” Task Quarterly 2.2, pp. 215‒270, 1998.

(19). J. Janicka, W. Kolbe and W. Kollmann, J. Non- Equilib. Thermodyn. 4 (1) (1979) 47‒66. Crossref

(20). R.R. Cao, H. Wang and S.B. Pope, P. Combust. Inst. 31 (2007) 1543‒1550. Crossref

(21). R.O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, 2003. Crossref

(22). M.J. Cleary and A.Y. Klimenko, Flow, Turbulence and Combustion 82 (2009) 477‒491. Crossref

(23). U. Maas, Mathematische Modellierung instationärer Verbrennungsprozesse unter Verwendung detaillierter Reaktionsmechanismen, Dissertation, Ruprecht-Karls-Universität Heidelberg, 1988.

(24). U. Maas and J. Warnatz, Combust. Flame 74 (1988) 53‒69. Crossref

(25). “GRI-Mech Home Page,” [Online]. Available: http://www.me.berkeley.edu/gri_mech/.

(26). J. Xu and S.B. Pope, Combust. Flame 123 (2000) 281‒307. Crossref

(27). R.R. Cao and S.B. Pope, Combust. Flame 143 (2005) 450‒470. Crossref

(28). Y. Ge, M.J. Cleary and A.Y. Klimenko, P. Combust. Inst. 34 (1) (2013) 1325‒1332. Crossref

(29). K. Vogiatzaki, M.J. Cleary, A. Kronenburg and J.H. Kent, Phys. Fluids 21 (2) (2009) 1‒11. Crossref

Downloads

Published

2018-01-24

How to Cite

Yu, C., Minuzzi, F., & Mass, U. (2018). Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method. Eurasian Chemico-Technological Journal, 20(1), 23–31. https://doi.org/10.18321/ectj705

Issue

Section

Articles