Synthesis, Characterization and Catalytic Properties of Microporous Cobalt Aluminosilicate (CoLTL) Molecular Sieves

Authors

  • P. Selvam National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India
  • S. Rajasekar National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India

DOI:

https://doi.org/10.18321/ectj397

Abstract

Thermally stable divalent cobalt substituted microporous aluminosilicate (CoLTL) molecular sieves were synthesized and characterized. These studies revealed isomorphous substitution of divalent cobalt in tetrahedral framework of LTL structure. In addition, the typical blue color of CoLTL confirms the tetrahedral environment of divalent cobalt in the framework, and as a result the catalyst showed excellent activity for the oxidation of cyclohexane under mild reaction conditions. Furthermore, unlike the many other cobaltbased microporous (heterogeneous) catalysts reported so far, CoLTL does not show any dislodgement or segregation of cobalt upon calcination or any other post-synthesis treatments. In this study, the performance of CoLTL was also compared with cobalt-containing aluminophosphate and silicate molecular sieves having AFI and MFI structures, respectively.

References

(1). Sheldon, R.A., and Kochi, J.K., Metal Catalysed Oxidation of Organic Compounds, Academic Press, New York, 1981. Crossref DOI: https://doi.org/10.1016/B978-0-12-639380-4.X5001-5

(2). Lin, S.-S., and Weng, H.-S., Appl. Catal. A 105: 289 (1993). Crossref; 118:21 (1994). DOI: https://doi.org/10.1016/0926-860X(93)80254-N

(3). Vanoppen, D. L., De Vos, D.E., Genet, M.J., Rouxhet, P.G., and Jacobs, P.A., Angew. Chem. Int. Ed. Engl. 34:560 (1995). Crossref DOI: https://doi.org/10.1002/anie.199505601

(4). Thomas, J.M., Raja, R., Sankar, G., and Bell, R.G., Acc. Chem. Res. 34:191 (2001). Crossref DOI: https://doi.org/10.1021/ar970020e

(5). Selvam P., and Mohapatra, S.K., J. Catal. 233: 276 (2005). Crossref DOI: https://doi.org/10.1016/j.jcat.2005.04.036

(6). Hamdy, M.S., Ramanathan, A., Maschmeyer, T., Hanefeld U., and Jansen, J.C., Chem. Eur. J. 12:1782 (2006). Crossref DOI: https://doi.org/10.1002/chem.200500166

(7). Hartmann M., and Kevan, L., Chem. Rev. 99: 635 (1999). Crossref DOI: https://doi.org/10.1021/cr9600971

(8). Weckhuysen, B.M., Rao, R.R., Martens, J.A. and Schoonheydt, R.A., Eur. J. Inorg. Chem. 4:565 (1999). Crossref DOI: https://doi.org/10.1002/(SICI)1099-0682(199904)1999:4<565::AID-EJIC565>3.0.CO;2-Y

(9). Montes, C., Montes, V.C., Villa A.L., and Corredores, N.M.R., Appl. Catal. A 197:151 (2000). Crossref DOI: https://doi.org/10.1016/S0926-860X(99)00545-1

(10). Wan, Y., Williams, C.D., Duke C.V.A., and Cox, J.J., Micropor. Mesopor. Mater. 47:79 (2001). Crossref DOI: https://doi.org/10.1016/S1387-1811(01)00319-5

(11). Sakthivel A., and Selvam, P., J. Catal. 211:134 (2002). Crossref DOI: https://doi.org/10.1006/jcat.2002.3711

(12). Barrer R.M., and Villiger, H., Z. Kristallogr. 128:270 (1969). Crossref DOI: https://doi.org/10.1524/zkri.1969.128.3-6.352

(13). Jentys, A., Pham, N.H., Vinek, H., Englisch, M., Lercher, J.A., Micropor. Mater. 6:13 (1996). Crossref DOI: https://doi.org/10.1016/0927-6513(95)00079-8

(14). Weckhuysen, B.M., Verberckmoes, A.A., Uytterhoeven, M.G., Mabbs, F.E., Collison, D., Boer, E., Schoonheydt, R.A., J. Phys. Chem. B 104:37 (2000). Crossref DOI: https://doi.org/10.1021/jp991762n

(15). Frache, A., Gianotti, E., Marchese, L., Catal. Today 77:371 (2003). Crossref DOI: https://doi.org/10.1016/S0920-5861(02)00381-4

Downloads

Published

15-01-2008

How to Cite

Selvam, P., & Rajasekar, S. (2008). Synthesis, Characterization and Catalytic Properties of Microporous Cobalt Aluminosilicate (CoLTL) Molecular Sieves. Eurasian Chemico-Technological Journal, 10(1), 1–7. https://doi.org/10.18321/ectj397

Issue

Section

Articles