Effect of Electric Field on the Swelling Behavior of Cross-linked Copolymers of Poly(ethylene oxide) Bis-macromonomers with Methacrylic Acid

Authors

  • Grigoriy A. Mun Kazakh National University, Department of Chemical Physics & Macromolecular Chemistry, Karasai Batyra 95, 480012 Almaty, Kazakhstan
  • Galiya Azhgozhinova Kazakh National University, Department of Chemical Physics & Macromolecular Chemistry, Karasai Batyra 95, 480012 Almaty, Kazakhstan
  • Erengaip M. Shaikhutdinov Kazakh National University, Department of Chemical Physics & Macromolecular Chemistry, Karasai Batyra 95, 480012 Almaty, Kazakhstan
  • Konstantin S. Kazanskii N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia
  • Marina Lagutina N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia

DOI:

https://doi.org/10.18321/ectj405

Abstract

The hydrogels capable to interpolymer complex formation have been synthesized by direct radical copolymerization of methacrylic acid with poly(ethylene oxide) bis-macromonomer bearing methacrylate terminal groups. The swelling behavior of these hydrogels in electric field has been studied. The hydrogels were shown to undergo contraction or additional swelling depending on solution pH. In weakly acidic region (pH 5.1) the contraction of the network was observed. In these conditions the swelling behavior of the hydrogel is affected by the complex formation between unionized carboxylic groups and oxyethylene units within the networks and the gel sample has relatively low swelling degree and network charge. In basic region (pH 9.18) the polycomplex is destroyed and the network has higher charge density and higher swelling degree. Under the action of electric field such hydrogel swells additionally. An increase in ionic strength of  solution decreases the amplitude of hydrogels contraction.

References

(1). Hoffman, A. "Smart" biomaterials; MRS Bulletin, 1991, 42.

(2). Dusek K. (Ed.), in Responsive gels: Volume Transitions I, Adv. Polym. Sci., 1993, Vol.109.

(3). Park K., Park H. Smart hydrogels, in The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, Salamone J.C. (Ed.), CRC Press: Boca Raton, Florida, 1996, 200-206.

(4). Nishi, S.; Kotaka, T. Macromol. 1985, 18, 1519.

(5). Nishi, S.; Kotaka, T. Polym. J. 1989, 21, 393.

(6). Katono, H.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Polym. J. 1991, 23, 1179.

(7). Lowman, A.M.; Peppas, N.A. Macromolecules 1997, 30, 4959.

(8). Nurkeeva, Z.S.; Mun, G.A.; Khutoryanskiy, V.V. Polymer Science, Ser. B., 2001, 43, 925.

(9). Lagutina, M.A.; Rakova, G.V.; Yarygina, N.V.; Dubrovskii, S.A.; Kazanskii, K.S. Polymer Science, Ser. A 2002, 44, 811.

(10). Kazanskii, K.S.; Skuridin, S.G.; Kuznetsova, V.I.; Evdokimov, Yu.M. Polymer Science, Ser. A 1996, 38, 570.

(11). Osada, Y.; Gong, J.-P. Adv. Mater. 1998, 10, 827.

(12). Hirai, T.; Nemoto, H.; Hirai, M.; Hayashi, S. J. Appl. Polym. Sci. 1994, 53, 79.

(13). Homma, M.; Seida, Y.; Nakano, Y. J. Appl. Polym. Sci. 2000, 75, 111.

(14). Kim, S.Y.; Lee, Y.M. J. Appl. Polym. Sci. 1999, 74, 1752.

(15). Yang, Y.; Engberts, J.B.F.N., Colloids & Surfaces A, 2000, 169, 85.

(16). Mun, G.A.; Nurkeeva, Z.S.; Khutoryanskiy, V.V.;Azhgozhinova, G.S.; Shaikhutdinov, E.M.; Park, K. Macromol. Rapid Commun. 2002, 23, 965.

Downloads

Published

2008-01-15

How to Cite

Mun, G. A., Azhgozhinova, G., Shaikhutdinov, E. M., Kazanskii, K. S., & Lagutina, M. (2008). Effect of Electric Field on the Swelling Behavior of Cross-linked Copolymers of Poly(ethylene oxide) Bis-macromonomers with Methacrylic Acid. Eurasian Chemico-Technological Journal, 10(1), 37–40. https://doi.org/10.18321/ectj405

Issue

Section

Articles

Most read articles by the same author(s)