Conventional and Radiation Synthesis of Polymeric Nano- and Microgels and Their Possible Applications

Authors

  • J.M. Rosiak Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego St. 15, 93-590 Lodz, Poland
  • P. Ulanski Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego St. 15, 93-590 Lodz, Poland
  • S. Kadlubowski Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego St. 15, 93-590 Lodz, Poland

DOI:

https://doi.org/10.18321/ectj160

Abstract

Soft nanomaterials – polymeric nanogels and microgels – have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues – macroscopic gels, most known in the form of water-swellable hydrogels – they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials.  A multitude of techniques has been described for the synthesis of polymeric nano- and microgels. Most of them can be classified in two groups. The first one are techniques based on concomitant polymerization and crosslinking (where the substrates are monomers or their mixtures), called by some authors "crosslinking polymerization". The second group are methods based on intramolecular crosslinking of macromolecules (where the starting material is not a monomer, but a polymer). The possibilities of employing macroscopic polymer gels as biomaterials, mostly in the form of hydrogels based on synthetic polymers, have been explored since 1960's, when these materials were first synthesized [1]. Since then, a number of products reached the stage of commercial application, soft contact lenses, drug delivery systems and wound dressings being the most widely known examples. Given the number of research groups involved and progress being made in this field, one may anticipate that in the future the number of hydrogel-based biomedical products on the market will be constantly increasing.

References

(1). O. Witcherle and D. Lim, Nature 185, 117 (1960).

(2). N.A. Peppas, Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton (1986).

(3). N.A. Peppas and J. J. Sahlin, Biomaterials 17, 1553 (1996).

(4). J.M. Rosiak, in Radiation Effects on Polymers, Edited by R. C. Clough and S. W. Shalaby, ACS Book Series Vol. 475, Am.Chem.Soc., Washington, D.C. (1991), p. 271.

(5). O. Hirasa, Journal of Intelligent Material Systems and Structures 4, 538 (1993).

(6). P. Molyneux, Water-Soluble Synthetic Polymers. Properties and Applications, CRC Press, Boca Raton (1987).

(7). H. Staudinger and W. Heuer, Chem. Ber. 67, 1164 (1934).

(8). H. Staudinger and E. Husemann, Chem. Ber. 68, 1618 (1935).

(9). W. Funke, O. Okay, and B. Joos-Müller, Adv. Polym. Sci. 136, 139 (1998).

(10). B.R. Saunders and B. Vincent, Adv. Colloid Polym. Sci. 80, 1 (1999).

(11). R. Pelton, Adv. Colloid Interface Sci. 85, 1 (2000).

(12). M. Antonietti, Angew. Chem. 100, 1813 (1988).

(13). M. Antonietti and K. Landfester, Prog. Polym.Sci. 27, 689 (2002).

(14). O. Okay, Polymer 40, 4117 (1999).

(15). P.L. Nayak, S. Alva, K. Yang, K. Dhal Pradeep, J. Kumar, and S.K. Tripathy, Macromolecules 30, 7351 (1997).

(16). D. Greszta, D. Mardare, and K. Matyjaszewski, Macromolecules 27, 638 (1994).

(17). D. Mardare and K. Matyjaszewski, in Polymeric Materials Encyclopedia, Edited by J.C. Salomone, Vol. 5, CRC Press, Boca Raton (1996), p. 3840.

(18). T.E. Patten, J. Xia, T. Abernathy, and K. Matyjaszewski, Science 272, 866 (1996).

(19). K. Matyjaszewski, ACS Symp. Ser. 85, 2 (1998).

(20). S.G. Gaynor, K. Beers, S. Coca, A. Muhlenbach, J. Qiu, J. Xia, X. Zhang, and K. Matyjaszewski, ACS Symp. Ser. 765, 52 (2000).

(21). Controlled/Living Radical Polymerization, Edited by K. Matyjaszewski, ACS Symp. Ser. Vol. 768, Am. Chem. Soc., Washington, D.C. (2000).

(22). K. Matyjaszewski, J. Qiu, D. Shipp, and S.G. Gaynor, Macromol. Symp. 155, 15 (2000).

(23). L. Ye, P.A.G. Cormack, and K. Mosbach, Anal. Chim. Acta 435, 187 (2001).

(24). L. Ye and K. Mosbach, React. Funct. Polym. 48, 149 (2001).

(25). M. Szwarc, Carboanions, Living Polymers and Electron Transfer Processes, Interscience, New York (1968).

(26). M. Szwarc, Ions and Ions Pairs in Organic Reactions, Wiley Interscience, New York (1974).

(27). M. Szwarc and M. Van Beylen, Ionic Polymerization and Living Polymers, Kluwer Academic Publishers, (1993).

(28). H.L. Hsieh and R.P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York (1996).

(29). D.J. Worsfold, J.G. Zilliox, and P. Rempp, Can. J. Chem. 42, 3379 (1969).

(30). A. Kohler, J.G. Zilliox, P. Rempp, J. Pollacek,and I. Koessler, Eur. Polym. J. 8, 627 (1972).

(31). L.K. Bi and L.J. Fetters, Macromolecules 9, 732 (1976).

(32). R.N. Young and L.J. Fetters, Macromolecules 11, 899 (1978).

(33). F.A. Taromi and P.Rempp, Makromol. Chem. 190, 1791 (1989).

(34). D. Held and A.H.E. Muller, Macromol. Symp. 157, 225 (2000).

(35). O. Okay and W. Funke, Makromol. Chem. Rapid Commun. 11, 583 (1990).

(36). O. Okay and W. Funke, Macromolecules 23, 2623 (1990).

(37). L. Pille and D.H. Solomon, Macromol. Chem. Phys. 195, 2477 (1994).

(38). S. Abrol and D.H. Solomon, Polymer 40, 6583 (1999).

(39). M. Nguyen, R. Beckett, L. Pille, and D.H. Solomon, Macromolecules 31, 7003 (1998).

(40). I. Piirma, Emulsion polymerization, Academic Press, New York (1982).

(41). Emulsion Polymerisation and Emulsion Polymers, Edited by P.A. Lovell and M.S. El Aasser, Wiley, Chichester (1997).

(42). M. Antonietti, R. Basten, and S. Lohmann, Macromol. Chem. Phys. 196, 441 (1995).

(43). F. Candau, in Polymerization in Organic Media, Edited by E.C. Paleos, Gordon & Breach, Philadelphia (1992), p. 215.

(44). L.-W. Chen, B.-Z. Yang, and M.-L. Wu, Progr. Org. Coatings 31, 393 (1997).

(45). S.-Y. Lin, K.-S. Chen, and L. Run-Chu, Polymer 40, 6307 (1999).

(46). P.J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).

(47). J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications, Hanser Gardner Pubns, Munich (1995).

(48). Photopolymerization: Fundamentals and Applications, Edited by A.B. Scranton, C. Bowman, and R.W. Peiffer,ACS Symposium Series Vol. 673, Am.Chem.Soc., Washington, D.C. (1997).

(49). A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford (1960).

(50). M. Dole, The Radiation Chemistry of Macromolecules, Academic Press, New York (1972).

(51). J.E. Wilson, Radiation Chemistry of Monomers, Polymers and Plastics, Marcel Dekker, New York (1974).

(52). CRC Handbook of Radiation Chemistry, Edited by Y. Tabata, Y. Ito, and S. Tagawa, CRC Press, Boca Raton (1991).

(53). Radiation Processing of Polymers, Edited by A. Singh and J. Silverman, Carl Hanser, München (1992).

(54). V.S. Ivanov, Radiation Chemistry of Polymers, VSP, Utrecht, The Netherlands (1992).

(55). R.J. Woods and A.K. Pikaev, Applied Radiation Chemistry: Radiation Processing, Wiley- Interscience, New York (1993).

(56). Recent Trends in Radiation Polymer Chemistry, Edited by S. Okamura, Advances in Polymer Science Vol. 105, Springer, (1993).

(57). J. Rosiak, K. Burczak, W. Pekala, N. Pislewski, S. Idziak, and A. Charlesby, Radiat. Phys. Chem. 32, 793 (1988).

(58). I. Kaetsu, K. Uchida, Y. Morita, and M. Okubo,Radiat. Phys. Chem. 40, 157 (1992).

(59). N. Nagaoka, A. Safranj, M. Yoshida, H. Omichi, H. Kubota, and R. Katakai, Macromolecules 26, 7386 (1993).

(60). Z.-L. Ding, M. Yoshida, M. Asano, Z.-T. Ma, H. Omichi, and R. Katakai, Radiat. Phys. Chem. 44, 263 (1994).

(61). M. Carenza and F.M. Veronese, J. Controlled Release 29, 187 (1994).

(62). G.A. Mun, Z.S. Nurkeeva, V.V. Khutorianskiy, A.D. Sergaziyev, and J.M. Rosiak, Radiat. Phys. Chem. 65, 67 (2002).

(63). Y. Morita, M. Yoshida, M. Asano, and I. Kaetsu, Colloid Polym. Sci. 265, 916 (1987).

(64). M. Yoshida, T. Yokota, M. Asano, and M. Kumakura, Colloid Polym. Sci. 267, 986 (1989).

(65). M. Yoshida, T. Yokota, M. Asano, and M. Kumakura, Eur. Polym. J. 26, 121 (1990).

(66). A. Safranj, S. Kano, M. Yoshida, H. Omichi, R. Katakai, and M. Suzuki, Radiat. Phys. Chem. 46, 203 (1995).

(67). M. Yoshida, M. Asano, I. Kaetsu, and Y. Morita, Yakuzaigaku 42, 137 (1982).

(68). Y. Naka, Y. Yamamoto, and K. Hayashi, Radiat. Phys. Chem. 40, 83 (1992).

(69). Y. Naka and Y. Yamamoto, J. Polym. Sci., Part A: Polym. Chem. 30, 1287 (1992).

(70). Y. Naka and Y. Yamamoto, J. Polym. Sci., Part A: Polym. Chem. 30, 2149 (1992).

(71). M. Dreja, W. Pyckhout-Hintzen, and B. Tieke, Macromolecules 31, 272 (1998).

(72). G.J. Price, in Chemistry under Extreme or Nonclassical Conditions, Edited by R. van Eldik and C.D. Hubbard, Wiley/Spektrum Akademischer Verlag, New York/Heidelberg (1997), p. 381.

(73). T.J. Mason and J.P. Lorimer, Sonochemistry: Theory and uses of ultrasound in chemistry, Ellis Horwood, Chichester (1988).

(74). Current Trends in Sonochemistry, Edited by G.J. Price, Royal Society of Chemistry, Cambridge (1992).

(75). H. Fujiwara and K. Goto, Polymer Bulletin 25, 571 (1991).

(76). K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, Ultrasonics Sonochem. 1, 65 (1994).

(77). Y. Naka and Y. Yamamoto, Kobunshi. Ronbunshu. 50, 287 (1993).

(78). B. Wang, S. Mukataka, M. Kodama, and E. Kokufuta, Langmuir 13, 6108 (1997).

(79). B. Wang, S. Mukataka, E. Kokufuta, M. Ogiso, and M. Kodama, J. Polym. Sci., Part B: Polym. Phys. 38, 214 (2000).

(80). B. Wang, S. Mukataka, E. Kokufuta, and M. Kodama, Radiat. Phys. Chem. 59, 91 (2000).

(81). P. Ulanski, Zainuddin, and J.M. Rosiak, Radiat.Phys. Chem. 46, 917 (1995).

(82). P. Ulanski, I. Janik, and J.M. Rosiak, Radiat. Phys. Chem. 52, 289 (1998).

(83). P. Ulanski, S. Kadlubowski, and J.M. Rosiak, Radiat. Phys. Chem. 63, 533 (2002).

(84). U. Brasch and W. Burchard, Macromol. Chem. Phys. 197, 223 (1996).

(85). M. Frank and W. Burchard, Makromol. Chem., Rapid Commun. 12, 645 (1991).

(86). W. Arbogast, A. Horvath, and B. Vollmert, Macromol. Chem. 181, 1513 (1980).

(87). B. Gebben, H.W.A. van der Berg, D. Bargeman, and C.A. Smolders, Polymer 26, 1737 (1985).

(88). P. Ulanski and J.M. Rosiak, Nucl. Instr. Meth. Phys. Res. B 151, 356 (1999).

(89). S. Sabharval, H. Mohan, Y.K. Bhardwaj, and A.B. Majali, Radiat. Phys. Chem. 54, 643 (1999).

(90). K.-F. Arndt, T. Schmidt, and R. Reichelt, Polymer 42, 6785 (2001).

(91). S. Kadlubowski, J. Grobelny, W. Olejniczak, M. Cichomski, and P. Ulanski, Macromolecules In press (2003).

(92). K.S. Schmitz, B. Wang, and E. Kokufuta, Macromolecules 34, 8370 (2001).

(93). R. Czechowska-Biskup, M.Sc. Thesis, Technical University of Lodz, Poland, 2002.

(94). R. Czechowska-Biskup, A. Henke, I. Ignaczak, J.M. Rosiak, and P. Ulanski. Unpublished data.

(95). N.C. Santos, A.M.A. Sousa, D. Betbeder, M. Prieto, and M.A.R.B. Castanho, Carbohydr. Res. 300, 31 (1997).

(96). C.B. Agbugba, B.A. Hendriksen, B.Z. Chowdhry, and M.J. Snowden, Colloid Surface A 137, 155 (1998).

(97). Polymer Gels. Fundamentals and Biomedical Applications, Edited by D. DeRossi, K. Kajiwara, Y. Osada, and A. Yamauchi, Plenum Press, New York (1991).

(98). K. Park, W.S.W. Shalaby, and H. Park, Biodegradable Hydrogels for Drug Delivery, Technomic, Lancaster (1993).

(99). Hydrogels and Biodegradable Polymers for Bioapplications, Edited by R.M. Ottenbrite, S.J. Huang, and K. Park, ACS Symposium Series 627 American Chemical Society, Washington, D.C. (1996).

(100). Silicone Hydrogels: the Rebirth of Continuous Wear Contact Lenses, Edited by D. Sweeney, Butterworth-Heinemann Medical, Oxford (2000).

(101). A.S. Hoffman, in Macromolecules, Edited by H. Benoit and P. Rempp, (1982), p. 321.

(102). K.R. Kamath and K. Park, Adv. Drug Delivery Rev. 11, 59 (1993).

(103). J.M. Rosiak, J. Controlled Release 31, 9 (1994).

(104). J.M. Rosiak, P. Ulanski, L.A. Pajewski, F. Yoshii, and K. Makuuchi, Radiat. Phys. Chem. 46, 161 (1995).

(105). N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).

(106). M.E. Byrne, K. Park, and N.A. Peppas, Adv. Drug Delivery Rev. 54, 149 (2002).

(107). A.S. Hoffman, Adv. Drug Delivery Rev. 54, 3 (2002).

(108). N.B. Graham, Chemistry & Industry 15/1990, 482 (1990).

(109). K. Burczak, T. Fujisato, M. Hatada, and Y. Ikada, Proc. Japan Acad. Ser. B. Phys. Biol. Sci. 67, 83 (1991).

(110). M. Kozicki, P. Kujawa, L.A. Pajewski, M. Kolodziejczyk, J. Narebski, and J.M. Rosiak, Eng. Biomater. 2, 11 (1999).

(111). P. Ulanski, I. Janik, S. Kadlubowski, M. Kozicki, P. Kujawa, M. Pietrzak, P. Stasica, and J.M. Rosiak, Polym. Adv. Technol. 13, 951 (2002).

(112). J.M. Rosiak, A. Rucinska-Rybus, and W. Pekala, US Patent 4,871,490 (1989).

(113). J.M. Rosiak, W. Dec, and A.J. Kowalski, Med. Sci. Monit. 2, 78 (1996).

(114). J.M. Rosiak, A.J. Kowalski, and W. Dec, Radiat. Phys. Chem. 52, 307 (1998).

(115). A.S. Hoffman, MRS Bulletin Sept. 1991, 42 (1991).

(116). J.Ed. Dusek, Responsive Gels: Volume Transitions, Adv. Polym. Sci. Vol. 109, Springer, Berlin (1993).

(117). R. Langer, Nature 392 (Supplement), 5 (1998).

(118). C. Pichot, A. Elaissari, D. Duracher, F. Meunier, and F. Sauzedde, Macromol. Symp. 175, 285 (2001).

(119). R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, Adv. Drug Delivery Rev. 11, 85 (1993).

(120). D. Shiino, Y. Murata, K. Kataoka, Y. Koyama, M. Yokoyama, T. Okano, and Y. Sakurai, Biomaterials 15, 121 (1994).

(121). T. Miyata, N. Asami, and T. Uragami, Nature 399, 766 (1999).

(122). T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, and O. Kamigaito, Proc. 1-st Japan International SAMPE Symposium 659 (1989).

(123). T. Shiga, Y. Hirose, A. Okada, and T. Kurauchi, J. Intel. Mater. Syst. Struct. 4, 553 (1993).

(124). A. Rembaum, S.P.S. Yen, and W. Volksen, Chemtech March 1978, 182 (1978).

(125). A. Rembaum and Z.A. Tokes, Microspheres: Medical and Biological Applications, CRC Press, Boca Raton (1988).

(126). S. Mitra, T.K. De, and A. Maitra, in Encyclopedia of Surface and Colloid Science, Edited by P. Somasundaran, Marcel Dekker, (2002), p. 2397.

(127). D. Lavan, D. Lynn, and R. Langer, Nature Drug Discovery 1, 77 (2002).

(128). S.P.S. Yen, A. Rembaum, and R.S. Molday, US Patent 4,157,323 (1979).

(129). A. Rembaum, S.P.S. Yen, and W.J. Dreyer, US Patent 4,138,383 (1979).

(130). M. Nair and J.S. Tan, US Patent 5,078,994 (1992).

(131). N.B. Graham and J. Mao, US Patent 5,994,492 (1999).

(132). A.V. Kabanov and S.V. Vinogradov, US Patent 6,333,051 (2001).

(133). A. Rembaum, S.P.S. Yen, E. Cheong, S. Wallace, R.S. Molday, I.L. Gordon, and W.J. Dreyer, Macromolecules 9, 328 (1976).

(134). P. Guiot and P. Couvreur, Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton (1986).

(135). T. Delair, F. Meunier, A. Elaissari, M.H. Charles, and C. Pichot, Colloid Surface A 153, 341 (1999).

(136). F. Sauzedde, A. Elaissari, and C. Pichot, Colloid Polym. Sci. 277, 1041 (1999).

(137). H. Kawaguchi, K. Fujimoto, and Y. Mizuhara, Colloid Polym. Sci. 270, 53 (1992).

(138). K. Fujimoto, Y. Mizuhara, N. Tamura, and H. Kawaguchi, J. Intelligent Mater. Syst. Struct.4, 184 (1993).

(139). T. Shiroya, N. Tamura, M. Yasui, K. Fujimoto, and H. Kawaguchi, Colloid Surface B 4, 267 (1995).

(140). M. Yasui, T. Shiroya, K. Fujimoto, and H. Kawaguchi, Colloid Surface B 8, 311 (1997).

(141). A. Elaissari, L. Holt, C. Voisset, C. Pichot, B. Mandrand, and C. Mabilat, J. Biomat. Sci., Polym. Ed. 10, 403 (1999).

(142). K. Achiha, R. Ojima, Y. Kasuya, K. Fujimoto, and H. Kawaguchi, Polym. Adv. Technol. 6, 534 (1995).

(143). H. Vihola, A. Laukkanen, J. Hirvonen, and H. Tenhu, Eur. J. Pharm. Sci. 16, 69 (2002).

(144). Y. Shin, J. H. Chang, J. Liu, R. Williford, Y.-K. Shin, and G.J. Exarhos, J. Controlled Release 73, 1 (2001).

(145). S.-Y. Lin, K.-S. Chen, and L. Run-Chu, Biomaterials 22, 2999 (2001).

(146). S. Peng and Ch. Wu, J. Phys. Chem. B 105, 2331 (2001).

(147). G.M. Eichenbaum, P.F. Kiser, D. Shah, S.A. Simon, and D. Needham, Macromolecules 32, 8996 (1999).

(148). G.M. Eichenbaum, P.F. Kiser, A.V. Dobrynin, S.A. Simon, and D. Needham, Macromolecules 32, 4867 (1999).

(149). K.S. Soppimath, A.R. Kulkarni, and T.M. Aminabhavi, J. Controlled Release 75, 331 (2001).

(150). S. Vinogradov, E. Batrakova, and A. Kabanov, Colloid Surface B 16, 291 (1999).

(151). S.V. Vinogradov, T.K. Bronich, and A.V. Kabanov, Adv. Drug Delivery Rev. 54, 135 (2002).

(152). P.F. Kiser, G. Wilson, and D. Needham, Nature 394, 459 (1998).

(153). P.F. Kiser, G. Wilson, and D. Needham, J. Controlled Release 68, 9 (2000).

(154). R.A. Siegel, Nature 394, 427 (1998).

(155). S. Kazakov, M. Kaholek, I. Teraoka, and K. Levon, Macromolecules 35, 1911 (2002).

(156). F. De Jaeghere, E. Allemann, F. Kubel, C. Galli, R. Cozens, E. Doelker, and R. Gurny, J. Controlled Release 68, 291 (2000).

(157). A. Biffis, N.B. Graham, G. Siedlaczek, S. Stalberg, and G. Wulff, Macromol. Chem. Phys. 202, 163 (2001).

(158). L.-A. Linden, in Proc. 5th Int. Symp. "Chemistry Forum'99", Edited by M. Jarosz, Warsaw University of Technology, Warsaw (1999), p. 65.

(159). S. Kadlubowski, A. Henke, and P. Ulanski. Unpublished data.

(160). S. Kadlubowski and P. Ulanski. Unpublished data.

(161). E. A. L. Balazs, in Cellulosics Utilisation, Edited by H. P. Inagaki, Elsevier Applied Science, London (1989), p. 233.

(162). S. Al-Assaf, G.O. Phillips, D.J. Deeble, B. Parsons, H. Starnes, and C. von Sonntag, Radiat. Phys. Chem. 46, 207 (1995).

(163). A. Henke, M.Sc. Thesis, Technical University of Lodz, Poland, 2002.

(164). D.S. Gibbs, J.F. Sinacola, and D.E. Ranck, US Patent 4,324,714 (1982).

(165). H.J. Wright, D.P. Leonard, and R.A. Etzell, US Patent 4,377,661 (1983).

166. H.J. Wright, D.P. Leonard, and R.A. Etzell, US Patent 4,414,357 (1983).

167. W.T. Short, R.A. Ottaviani, and D.J. Hart, US Patent 4,570,734 (1985).

168. K.G. Olson, S.K. Das, and R.Dowbenko, US Patent 4,540,740 (1985).

169. T. Kurauchi, K. Ishii, A. Yamada, and J. Nozue,US Patent 4,563,372 (1986).

170. C. Gajria and Y. Ozari, US Patent 4,567,246 (1986).

171. K.G. Olson, S.K. Das, and R. Dowbenko, US Patent 4,611,026 (1986).

172. Y. Tsuchiya and K. Tobinaga, US Patent 5,200, 461 (1993).

173. G.P. Craun, D.J. Telford, and H.J. DeGraaf, US Patent 5,508,325 (1996).

174. G.P. Craun and V.V. Kaminski, US Patent 5,554, 671 (1996).

175. W. Dannhorn, L. Hoppe, E. Luhmann, and H.- J. Juhl, US Patent 5,565,504 (1996).

176. G.P. Craun, US Patent 5,576,361 (1996).

177. G.P. Craun, US Patent 5,733,970 (1998).

178. G.P. Craun, B.A. Smith, and N.S. Williams, US Patent 5,877,239 (1999).

179. H.-D. Hille, S. Neis, and H. Muller, US Patent 5,977,258 (1999).

180. M. Roth, Q. Tang, and S. H. Eldin, US Patent 5,994,475 (1999).

181. D. Saatweber and B. Vogt-Birnbrich, Progr. Org. Coatings 28, 33 (1996).

182. Automotive Paints and Coatings, Edited by G. Fettis, VCH Verlagsgesellschaft, Weinheim (1995).

183. Polymer Dispersions and Their Industrial Applications, Edited by D. Urban and K. Takamura, Wiley-VCH, Weinheim (2002).

184. V.G. Corrigan and S.R. Zawacky, US Patent 5,096,556 (1992).

185. P.W. Uhlianuk, US Patent 5,407,976 (1995).

186. C. Raquois, J.F. Tassin, S. Rezaiguia, and A.V. Gindre, Progr. Org. Coatings 26, 239 (1995).

187. K. Ishii, Colloid Surface A 153, 591 (1999).

188. Y.-J. Park, M.J. Monteiro, S. van Es, and A.L. German, Eur. Polym. J. 37, 965 (2001).

189. A. Henke, E. Jaehne, and H.-J. P. Adler, Macromol. Symp. 164, 1 (2001).

190. A. Henke, Farbe und Lack 106, (2000).

191. N.D.P. Smith, UK Patent 1,242,054 (1967).

192. W. Funke, J. Oil Col. Chem. Assoc. 60, 438 (1977).

193. S. Porter Jr. and B.N. McBane, US Patent 4,075,141 (1978).

194. J. Kumanotani, Progr. Org. Coatings 34, 135 (1998).

195. J.-F. Tranchant, H.-G. Riess, and A. Meybeck, US Patent 6,280,713 (2001).

196. A. Kuentz, H.-G. Riess, A. Meybeck, and J.-F. Tranchant, US Patent 5,711,940 (1998).

197. J.C. Solenberger, US Patent 3,941,728 (1976).

198. J.C. Solenberger, US Patent 3,941,730 (1976).

199. A.J. Deyrup, US Patent 4,012,352 (1977).

200. D.S. Gibbs, US Patent 4,164,522 (1979).

201. D.S. Gibbs, J.H. Benson, and R.T. Fernandez, US Patent 4,232,129 (1980).

202. H. Alt, F. Baumann, J. Weis, and A. Koppl, US Patent 6,358,876 (2002).

203. A. Köppl, H.G. Alt, and R. Schmidt, J. Organometal. Chem. 577, 351 (1999).

204. M.L. Zweigle and J.C. Lamphere, US Patent 4, 172,066 (1979).

205. B.-L. Lee and L. C. Hrusch, US Patent 6,237, 333 (2001).

206. R.A. Herrett and P.A. King, US Patent 3,336, 129 (1967).

207. S.N. Yen and F.D. Osterholtz, US Patent 3,900, 378 (1975).

208. K. Tanaka, US Patent 5,013,349 (1991).

209. T. Takahashi, H. Watanabe, N. Miyagawa, S. Takahara, and T. Yamaoka, Polym. Adv. Technol. 13, 33 (2002).

210. S.-M. Cheng, R.-C. Liang, and Y.-H. Tsao, US Patent 5,811,220 (1998).

211. S. Satake, Y. Yatsuyanagi, M. Fuji, and I. Imagawa, US Patent 5,545,694 (1996).

212. S. Satake, Y. Yatsuyanagi, M. Fuji, and I. Imagawa, US Patent 5,547,999 (1996).

213. M. Fryd and T.R. Suess, US Patent 4,726,877 (1988).

214. M. Fryd and T.R. Suess, US Patent 4,753,865 (1988).

215. M. Fryd, E. Leberzammer, and S.A.R. Sebastian, US Patent 5,075,192 (1991).

216. K. Kanda, Y. Ichinose, S. Arimatsu, K. Konishi, and T. Hase, US Patent 5,393,637 (1995).

217. A. Kitahara and K. Konno, US Patent 4,749, 506 (1988).

218. D. Kuckling, I.G. Ivanova, H.-J.P. Adler, and T. Wolff, Polymer 43, 1813 (2002).

219. C. Graf, W. Schaertl, and N. Hugenberg, Adv.Mater. 12, 1353 (2000).

220. G. Helling, US Patent 4,513,080 (1985).

221. M. Nair, L.A. Lobo, and T.K. Osburn, US Patent 6,001,549 (1999).

222. J.D. Debord, S. Eustis, S.B. Debord, M.T. Lofye, and L.A. Lyon, Adv. Mater. 14, 658 (2002).

223. J.H. Holtz and S.A. Asher, Nature 389, 829 (1997).

224. Y.-B. Kim, C.-H. Park, and J.-W. Hong, US Patent 6,399,675 (2002).

225. G.C. Rex and S. Schlick, J. Phys. Chem. 89, 3598 (1985).

226. J.H. Min and J.G. Hering, US Patent 6,203,709 (2001).

227. S. Duran, D. Solpan, and O. Guven, Nucl. Instr. Meth. Phys. Res. B 151, 196 (1999).

228. H. Ichijo, R. Kishi, O. Hirasa, and Y. Takiguchi, Polym. Gels and Networks 2, 315 (1994).

229. T. Caykara, R. Inam, and C. Ozyurek, J. Polym. Sci., Part A: Polym. Chem. 39, 277 (2001).

230. H. Unno, X. Huang, T. Akehata, and O. Hirasa, in Polymer Gels. Fundamentals and Biomedical Applications, Edited by D. DeRossi, Plenum Press, New York (1991), p. 183.

231. G.M. Eichenbaum, P.F. Kiser, D. Shah, W.P. Meuer, D. Needham, and S.A. Simon, Macromolecules 33, 4087 (2000).

232. S. Peng and C. Wu, Macromolecules 34, 6795 (2001).

233. S. Peng and C. Wu, Polymer 42, 6871 (2001).

234. B.R. Saunders, H.M. Crowther, G.E. Morris, S.J. Mears, T. Cosgrove, and B. Vincent, Colloid Surface A 149, 57 (1999).

235. G.E. Morris, B. Vincent, and M.J. Snowden, Progr. Colloid Polym. Sci. 105, 16 (1997).

236. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.- H. Liu, C. Devadoss, and B.-H. Jo, Nature 404, 588 (2000).

Downloads

Published

2007-01-10

How to Cite

Rosiak, J., Ulanski, P., & Kadlubowski, S. (2007). Conventional and Radiation Synthesis of Polymeric Nano- and Microgels and Their Possible Applications. Eurasian Chemico-Technological Journal, 9(1), 9–28. https://doi.org/10.18321/ectj160

Issue

Section

Articles