Semi-interpenetrating Polymer Networks of Polyelectrolytes

Authors

  • S.E. Kudaibergenov Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan
  • N. Dolya Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan
  • G. Tatykhanova Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan
  • Zh.E. Ibraeva Institute of Polymer Materials and Technology, Panfilov Str. 52/105, Almaty, Kazakhstan
  • B.Kh. Musabaeva Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan
  • M.G. Yashkarova Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan
  • L.A. Bimendina Semipalatinsk State Shakarim University, Glinka Str. 20a, Semipalatinsk, Kazakhstan

DOI:

https://doi.org/10.18321/ectj290

Abstract

This review is devoted to synthetic pathways, swelling-deswelling behavior, physico-chemical and physico-mechanical properties as well as stimuli-sensitivity of semi-interpenetrating polymer networks (SIPNs) based on crosslinked and linear polymers. The main attention is paid to systems composed of neutral or charged three-dimensional networks with embedded neutral or charged macromolecules. The peculiarities of template (co)polymerization of hydrophilic monomers in the presence of water-soluble polymers as a matrix are emphasized. Nonionic hydrogel matrixes, namely polyacrylamide, poly(acrylamideco-acrylic acid), poly(N-isopropylacrylamide) that are able to exhibit the sensitivity to dielectric permittivity, pH and temperature are mostly considered. Typical water-soluble polymers which serve as a matrix and are immobilized within networks represent the sensitive to environment water-soluble nonionic, anionic, cationic and amphoteric ones. Some examples of alginate and chitosan based SIPNs are demonstrated because these polysaccharides distinguish by commercial availability and biodegradability. Synthetic protocols of the organic-inorganic hybrid SIPN as well as hydrogel-protein SIPN are given. The SIPNs obtained by interpolyelectrolyte reactions, e.g. by interaction of ionic networks with oppositely charged linear macromolecules at gel-solution interface are also exemplified. The SIPNs containing enzymes, catalytic active functional groups, polymer-metal complexes, and nanoparticles exhibit high catalytic activity in hydrolysis, hydrogenation and decomposition of low-molecular-weight substrates. Structural, morphological, physico-chemical and physico-mechanical properties of SIPNs are determined by both network structure and nature of immobilized linear polymers. Application aspects of SIPN include drug delivery systems, pervaporation and fuel cell membranes, gel-immobilized nanosized catalysts, solar technology etc.

References

(1). Y. Osada, A.R. Khokhlov, Ed. Polymer gels and networks, N-Y, Marcel Dekker, 2002.

(2). Y. Osada, J.-P. Gong, Soft and wet materials: Polymer gels, Adv. Mater., 10, 827-837 (1998).

(3). E.S. Gil, S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci., 29, 1173-1222 (2004).

(4). Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev.,53, 321-339 (2001).

(5). Galaev, B. Mattiasson "Smart" polymers and what they could do in biotechnology and medicine. Trends Biotechnol., 17, 335-340 (2000).

(6.) J. Kobayashi, A. Kikuchi, K. Sakai, T. Okano, Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. J. Chromatogr.A, 958, 109-119 (2002).

(7). A. Kikuchi, T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog. Polym. Sci., 27, 1165-1193 (2002).

(8). H. Chen, Y.-L. Hsieh, Dual temperature- and pHsensitive hydrogels from interpenetrating networks and copolymerization of N-isopropylacrylamide and sodium acrylate, J. Polym. Sci. Part A: Polym. Chem., 42, 3293-3301 (2004).

(9). L.H. Sperling, Interpenetrating polymer networks and related materials, Plenum Press, N-Y (1981).

(10). N.A. Peppas, J. Zhang, Interpenetrating polymeric networks, In: Encycl. Biomater. Biomed. Eng., 1-9 (2006).

(11). S.E. Kudaibergenov, D.E. Nurgalieva, E.A. Bekturov et al., Study of polyampholyte hydrogels and interpenetrating polyelectrolyte networks based on 4-(but-3-en-1-ynyl)-1-methylpiperidin-4-ol. Macromol. Chem. Phys., 195, 3033-3038 (1994).

(12). Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci., 30, 1-9 (2005).

(13). J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 15, 1155-1158 (2003).

(14). A. Nakayama, A. Kakugo, J.P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater., 14, 1124-1128 (2004).

(15). J. Zhang, N. Peppas, Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymer networks. Macromolecules, 33, 102-107 (2000).

(16). J. Zhang, N. Peppas, Molecular interactions in poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymer networks. J. Appl. Polym.Sci., 82, 1077-1082 (2001).

(17). W. Wu, W. Li, L.Q. Wang, K. Tu, W. Sun, Synthesis and characterization of pH- and temperature-sensitive silk sericin/poly(N-isopropylacrylamide) interpenetrating polymer networks. Polym. Intern., 55, 513-519 (2006).

(18). Y.X. Zhang, F.P. Wu, M.Zh. Li, E.J. Wang, pH switching "on-off" semi-IPN hydrogel based on crosslinked poly(acrylamide-co-acrylic acid) and linear polyallylamine. Polymer, 46, 7695-7700 (2005).

(19). Y. Tao, J.X. Zhao, C.X. Wu, Polyacrylamide hydrogels with trapped sulfonated polyaniline, European Polymer Journal, 41, 1342-1349 (2005).

(20). Y.M. Mohan, J.P. Dickson, K.E. Geckeler, Swelling and diffusion characteristics of novel semiinterpenetrating network hydrogels composed of poly[(acrylamide)-co-(sodium acrylate)] and poly[(vinylsulfonic acid), sodium salt], Polym. Intern., 56, 231-244 (2007).

(21). R.A. Stile, K.E. Healy, Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. 1. Effects of linear poly(acrylic acid) chains on phase behavior, Biomacromolecules, 3, 591-600 (2002).

(22). R.A. Stile, E. Chung, W.R. Burghardt, K.E. Healy, "Poly(N-isopropylacrylamide)-based semiinterpenetrating polymer networks for tissue engineering applications. 2. Effects of linear poly(acrylic acid) on rheology" J. Biomat. Sci.
Polymer Ed., 15, 865-878 (2004).

(23). B.C. Shin, M.S. Jhon, H.B. Lee, S.H. Yuk, Temperature-induced phase transition of semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and hydrophilic polymer, Eur. Polym. J., 34, 171-174 (1998).

(24). J. Djonlagi, Z.S. Petrovi, Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels, J. Polym. Sci. Part B: Polym. Phys., 42, 3987-3999, (2004).

(25). Q.T. Nguyen, C.O.M. Bareck, M.O. David, M. Métayer, S. Alexandre, Ion-exchange membranes made of semi-interpenetrating polymer networks, used for pervaporation-assisted esterification and ion transport, Materials Research Innovations, 7, 212-219 (2003).

(26). G. Chao, H. Deng, Q. Huang, W. Jia, W. Huang, Y. Gu, H. Tan, L. Fan, C. Liu, A. Huang, K. Lei, C. Gong, M. Tu, Z. Qian, Preparation and characterization of pH sensitive semi-interpenetrating network hydrogel based on methacrylic acid, bovine serum albumin (BSA), and PEG, Journal of Polymer Research, 13, 349-355 (2006).

(27). N. Sahiner, W.T. Godbey, G.L. McPherson, V.T. John, Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: synthesis and characterization, Colloid & Polymer Science, 284, 1121-1129 (2006).

(28). Zh. Liu, M. Yi, M. Zhai, H. Ha, Z. Luo, X. Xiang, Radiation synthesis and environmental responsiveness of semi-interpenetrating polymer networks composed of poly(dimethyl-aminoethyl methacrylate) and poly(ethylene oxide), J. Appl. Polym. Sci., 92, 2995-3001 (2004).

(29). K. Ogawa, S. Sato, E. Kokufuta, Formation of intra- and interparticle polyelectrolyte complexes between cationic nanogel and strong polyanion. Langmuir, 21, 4830-4836 (2005).

(30). Y. Ogawa, K. Ogawa, E. Kokufuta, Swellingshrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions. Langmuir, 20, 2546-2552 (2004).

(31). L. Zheng, S. Xu, Y. Peng, J. Wang, G. Peng, Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride), Polym. Adv. Technol., 18, 194-199 (2007).

(32). V.A. Kabanov, A.B. Zezin, V.B. Rogacheva, V.A. Prevysh, Active transport of linear polyions in oppositely swollen polyelectrolyte networks. Makromol. Chem., 190, 2211-2216 (1989).

(33). Zh.E. Ibraeva, M. Hahn, W. Jaeger, A. Laschewsky, L.A. Bimendina, S.E. Kudaibergenov, Swelling behavior and complex formation ability of ternary amphoteric gels based on allylamine derivatives and maleic acid. Macromol. Mater. Eng., 290, 769-777 (2005).

(34). A.M. Chupyatov, V.B. Rogacheva, A.B. Zezin, V.A. Kabanov, Vysokomolek. Soedin. Ser A, 36, 212 (1994).

(35). V.A. Kabanov, Polyelectrolyte complexes in solution and condensed phase. Uspekhi Khimii (Rus. Chem. Rev.), 74(1), 5-23 (2005).

(36). D.S. Svetlichnyi, S.E. Kudaibergenov, Synthesis and characterization of semi-interpenetrating system of hydrogel-linear polymer. Communication 1: Hydrogel of poly(acrylamide-acrylic acid)/poly(ethyleneimine), Vestnik SGU, No. 4, 160-165 (2006).

(37). S.E. Kudaibergenov, N. Dolya, G. Tatykhanova, B.Kh. Musabaeva, M.G. Yashkarova, Semi-interpenetrating hydrogels of polyelectrolytes, Abstr. of ISPST Conf. Tehran, October 23-25, 2007.

(38). S.E. Kudaibergenov, D.S. Svetlichnyi, N. Dolya, G. Tatykhanova, B.Kh. Musabaeva, M.G. Yashkarova, L.A. Bimendina, Synthesis and characterization of semi-interpenetrating polymer networks composed of acrylamide based hydrogels and linear polyelectrolytes, Materials of European Polymer Congress, Portoroz, Slovenia, 2007.

(39). N. Dolya, B.Kh. Musabaeva, M.G. Yashkarova, L.A. Bimendina, S.E. Kudaibergenov, Preparation and properties of semi-interpenetrating networks based on acrylamide gels and linear polyelectrolytes, Izv. Natl. Akad. Nauk RK, Ser. Khim., No. 2, 45-50 (2007).

(40). J.-F. Yang, T. K. Kwei, pH-sensitive hydrogels based on polyvinylpyrrolidone- polyacrylic acid (PVP-PAA) semi-interpenetrating networks (semi-IPN): Swelling and controlled release, J. Appl. Polym. Sci., 69, 921-930 (1998).

(41). T. Ikehara, T. Nishi, Combined collapse-swelling behavior of acrylamide gel in polymeric solution, Phys. Rev. Lett., 71, 2497-2500 (1993).

(42). F. Meeussen, H. Berghmans, S. Verbrugghe, E. Goethals, F. Du Prez, Phase behaviour of poly(Nvinyl caprolactam) in water, Polymer, 41, 8597 (2000).

(43). V.V. Khutoryanskiy, Synthesis and solution properties of hydrophobically modified polysaccharides, Eurasian Chem. Tech. J., 7, 99-113 (2005).

(44). G-Q. Zhang, L-S. Zha, M-H. Zhou, J-H. Ma, BR. Liang, Rapid deswelling of sodium alginate/poly
(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes, Colloid & Polymer Science, 283 431-438 (2005).

(45). H.K. Ju, S.Y. Kim, S.J. Kim, Y.M. Lee, pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide), J. Appl. Polym. Sci., 83, 1128-1139 (2002).

(46). S.B. Lee, E.K. Park, Y.M. Lim, S.K. Cho, S.Y. Kim, Y.M. Lee, Y.C. Nho, Preparation of alginate/poly(N-isopropylacrylamide) semi-interpenetrating and fully interpenetrating polymer network hydrogels with γ-ray irradiation and
their swelling behaviors, J. Appl. Polym. Sci.,100, 4439-4446 (2006).

(47). S.J. Kim, S.G. Yoon, S.I. Kim, Effect of the water state on the electrical bending behavior of chitosan/poly(diallyldimethylammonium chloride) hydrogels in NaCl solutions, J. Polym. Sci. Part B: Polym. Phys., 42, 914-921 (2004).

(48). S.J. Kim, S.G. Yoon, I.Y. Kim, S.I. Kim.: Swelling characterization of the semiinterpenetrating polymer network hydrogels composed of chitosan and poly(diallyldimethylammonium chloride). J. Appl. Polym. Sci., 91, 2876-2880, (2004).

(49). K.C. Gupta, M.N.V.R. Kumar, Studies on semiinterpenetrating polymer network beads of chitosan-poly(ethylene glycol) for the controlled release of drugs, J. Appl. Polym. Sci., 80, 639-649 (2001).

(50). S.J. Kim, S.R. Shin, D.I Shin, I.Y. Kim, S.I. Kim, Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate), J. Appl. Polym. Sci. 96, 86-92 (2005).

(51). S.J. Kim, H.I. Kim, S.R. Shin, S.I. Kim, Electrical behavior of chitosan and poly(hydroxyethyl methacrylate) hydrogel in the contact system, J. Appl. Polym. Sci., 92, 915-919 (2004).

(52). J.R. Khurma, D.R. Rohindra, A.V. Nand, Swelling and thermal characteristics of genipin crosslinked chitosan and poly(vinyl pyrrolidone) hydrogels, Polymer Bulletin, 54, 195-204 (2005).

(53). W-F. Lee, Y-J. Chen, Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels, J.Appl. Polym. Sci., 82, 2487-2496 (2001).

(54). L. Verestiuc, C. Ivanov, E. Barbu, J. Tsibouklis, Dual-stimuli-responsive hydrogels based on poly(N-isopropylacrylamide)/chitosan semi-interpenetrating networks, International Journal of Pharmaceutics, 269, 185-194 (2004).

(55). K. Kumari, P.P. Kundu, Semiinterpenetrating polymer networks of chitosan and L-alanine for monitoring the release of chlorpheniramine maleate, J. Appl. Polym. Sci., 103, 3751-3757 (2007).

(56). E.A. Bekturov, S.E. Kudaibergenov, Catalysis by Polymers. Huthig & Wepf Verlag Zug, Heidelberg, 1996,
153 p.

(57). G. Wang, K. Kuroda, T. Enoki, A. Grosberg, S. Masamune, T. Oya, Y. Takeoka, T. Tanaka, Gel catalysts that switch on and off, Proc. Natl. Acad. Sci., 97. 9861-9864 (2000).

(58). M. John, J. Jose, B. Mathew, Synthesis, characterization, and catalytic activity of 4 mol.% N,Nmethylene bisacrylamide crosslinked poly(acrylic acid)-metal complexes, J. Appl. Polym. Sci., 92, 272-279 (2004).

(59). N. Dolya, B.Kh., Musabaeva, S.E., Yashkarova, M.G., Zharmagambetova, A.K., Kudaibergenov, S.E. Synthesis and characterization of semi-interpenetrating system of hydrogel-linear polymer. Communication 2: Hydrogen peroxide decomposition by gel-immobilized polyethyleneimine-copper(II) complex, Regional'nyi Vestnik Vostoka, 2007.

(60). S. Lee, W. Jang, S. Choi, K. Tharanikkarasu, Y. Shul, H. Han, Sulfonated polyimide and poly(ethylene glycol)diacrylate based semi-interpenetrating polymer network membranes for fuel cells, J. Appl. Polym. Sci., 104, 2965-2972 (2007).

(61). C. Wang, N.T. Flynn, R. Langer, Morphologically well-defined gold nanoparticles embedded in thermo-responsive hydrogel matrices, Mat. Res. Soc. Symp. Proc., 820, R2.2.1-R2.2.6 (2004).

(62). V.V. Berentsveig, U.Sh. Gafurov, Yu.S. Kinas, A.I.Kokorin, Polyacrylamide gel based on a palladium-copper catalytic system for carbon monoxide oxidation, Kinetics and Catalysis, 33, 945-947 (1992).

(63). Y.M. Mohan, K. Lee, T. Premkumar, K.E. Geckeler, Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications, Polymer, 48, 158-164 (2007).

(64). J.-H. Kim, T.R. Lee, Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles, Drug Development Research, 67, 61-69 (2006).

(65). Zh.E. Ibraeva, A.K. Zharmagambetova, S.E. Kudaibergenov, J. Koetz, E.A. Bekturov, Hydrogel- coated palladium and silver nanoparticles, Abstr. of 12-th IUPAC Intern. Symp. on Macromolecular Complexes (MMC-12), Fukuoka, Japan, 2007.

(66). A.K Bajpai, Blood protein adsorption onto macroporous semi-interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (PHEMA) and assessment of in vitro blood compatibility, Polym. Intern., 56, 231-244 (2007).

(67). L. Lebrun, E. Da Silva, M. Metayer, Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix, J. Appl. Polym. Sci., 84, 1572-1580 (2002).

(68). D.E. Bergbreiter, B.L Case, Y.S. Liu, J.W. Caraway, Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis, Macromolecules, 31, 60536062 (1998).

(69). R.S. Langer, J.H. Elisseeff, K. Anseth, D. Sims, Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering, US Patent, 6,224,893 (1997).

(70). E. Oikawa, H. Tatsumi, C. Takano, T. Kaneko, T. Aoki, Pervaporation and solute separation through semi-interpenetrating and interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(glycidyl methacrylate), J. Appl. Polym. Sci., 69, 1953-1963 (1998).

(71). A.K. Bajpai, S. Bhanu, Immobilization of α-amylase in vinyl-polymer-based interpenetrating polymer networks, Colloid & Polym. Sci., 282, 76-83 (2003).

(72). H.R. Wilson, H.-J. Cantow, W. Eck, Semi-interpenetrating polymer networks with temperaturedependent light transmission – a new smart material for solar technology, Advanced Materials, 7, 800-803 (2004).

(73). V.B. Sigitov, S.E. Kudaibergenov, G.B. Khairov, Hydrogels for cleaning of internal surface of main pipes, Vestnik SGU, No.4, 19-23 (2006).

Downloads

Published

2007-08-20

How to Cite

Kudaibergenov, S., Dolya, N., Tatykhanova, G., Ibraeva, Z., Musabaeva, B., Yashkarova, M., & Bimendina, L. (2007). Semi-interpenetrating Polymer Networks of Polyelectrolytes. Eurasian Chemico-Technological Journal, 9(3), 177–192. https://doi.org/10.18321/ectj290

Issue

Section

Articles