Biodegradable Poly(ester-urethane)s Based on Poly[(R)-3- hydroxybutyrate] and Poly(ε-caprolactone) Blocks: Thermal, Mechanical and Biodegradation Behaviour

Authors

  • Gamal R. Saad Department of Chemistry, Faculty of Science, University of Cairo, Giza, P.O. 12613, Egypt
  • Tamer M. Khalil Department of Chemistry, Faculty of Science, University of Cairo, Giza, P.O. 12613, Egypt
  • Magdy W. Sabaa Department of Chemistry, Faculty of Science, University of Cairo, Giza, P.O. 12613, Egypt

DOI:

https://doi.org/10.18321/ectj393

Abstract

α-ω-Dihydroxy-terminated poly[(R)-3-hydroxybutyrate] (PHB-diol) (Mn ~ 4800) was synthesized by  ransesterification of the corresponding PHB homopolymer with 1,4-butanediol in presence of ptoluenesulfonic acid. It was subsequently combined with poly(ε-caprolactone)-diols (PCL-diols) (Mn ~ 1260 and 2200) acting as soft segment via 1,6-hexamethylene diisocyanate to high molecular weight poly(esterurethane) s. The content of PHB acting as hard segments systematically varied from ~20 to 60 wt.%. The synthesized materials were characterized by FTIR, 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and tensile properties. In the case of segmented poly(ester-urethane)s, those samples obtained from PCL (Mn ~ 1260) showed an increase in Tg's with increasing PHB content, indicating some extent of PCL/PHB segment phase mixing. All of the investigated copolymers were semicrystalline with Tm of PCL phase varying from 39-47 °C and PHB phase varying from 141-150 °C. The TGA analysis of the investigated copolymers showed three distinct weight loss steps assigned to the thermal degradation of PHB, PCL and urethane linkage with increasing temperature, respectively. As for mechanical tensile, it was found that the ultimate strength and elongation at the breakpoint decrease with increasing PHB content. The biodegradability was studied in active soil. The results showed that the biodegradation rate of the investigated copolymers increases with increasing PHB content.

References

(1). Doi, Y. Microbial Polyester; VCH Publishers. New York 1990.

(2). Anderson, A.J., and Dawes, E.A. Microbial rev. 54:247 (1990).

(3). Steinbüchel, A. Polyhydroxyalkanoic acids. In: Byrom D, editor.Biomaterials: novel materials from biological sources. New York, Stocktom, 1991, p.124-213.

(4). Lenz, W., and Marchessault, R.H., Biomacromolecules 6:1 (2005).

(5). Doi, Y., Kitamura, S., and Abe, H., Macromolecules 16:99 (1995).

(6). Saito, Y., and Doi, Y., Int. J. Biol. Macromol. 16:99 (1994).

(7). Su, F., Iwata, T., Tanaka, F., and Doi, Y., Macromolecules 36:6401 (2003).

(8). Abe, H., Matsubara, I., and Doi, Y., Macromolecules 28:844 (1995).

(9). Kumagi, Y., and Doi, Y., J. Environ. Polym. Degrad. 1:181 (1993).

(10). Yoon, S.J., Chang, M.C., Kim, M.N., Kang, E.J., Kim, C., and Chin, I.J., J. Polym. Phys. 34:2543 (1996).

(11). Gassner, F., and Owen, A.J., Polym. Int.39:215 (1996).

(12). Dufresne, A., and Vincedon, M., Macromoecules 33:2998 (2000).

(13). An, Y., Dang, L., Xmg, P., Mo, Z., Zhoang, Y., and Feng, Z., Eur. Polym. J. 33:1449 (1997).

(14). Xmg, P., Ai, X., Dang, L., and Feng, Z., Macromolecules 31:6598 (1998).

(15). Savenkova, L., Gercberga, Z., Nikolaeva, Dzene A, Bibers, I., and Kalnin, M., Process. Biochem. 35:573 (2000).

(16). Reeve, M.S., McCarthy, S.P., and Gross, R.A., Macromolecules 26:288 (1993).

(17). Hirt, T.D., Neuenschwander, P., and Suter, U.W., Macromol. Chem. Phys. 197:4253 (1996).

(18). Lendleim, A., Neuenschwander, P., and Suter, U. W., Macromol. Chem. Phys 199:2785 (1998).

(19). Saad, G.R., Lee, Y.J., and Seliger, H., J. Appl. Polym. Sci. 83:703 (2002).

(20). Andrade, A.P., Neuenschwader, P., Hany, R., Egli, T., and Witholt, B., Macomolecules 35:4946 (2002).

(21). Impallomeni, G., Giuffrida, M., Barbuzzi, T., Musumaru, G., Ballistren, A., Biomacromolecules 3:835 (2002).

(22). Saad, G.R., Macromol. Biosci. 1:387 (2001).

(23). Saad, G.R., and Seliger, H., Polym, Degrad. Stab. 83:101 (2004).

(24). Reeve, M.S., McCarthyl, S.P., and Gross, R.A., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 31:437 (1990).

(25). Crescenzi, V., Manzini, G., Calzolari, G., and Borri, C., J. Eur. Polym. 8:449 (1972).

(26). Barham, P., Keller, A. J., Otun, E. L., and Holmes, P. A., J. Mater. Sci. 19:2781 (1984).

(27). Grassie, N., Murray, E. J., and Holmes, P. A., Polym. Degrad. Stab. 6:48 (1984).

(28). Grassie, N., Murray, E. J., and Holmes, P. A., Polym. Degrad. Stab. 6:95 (1984).

(29). Nishida, H., and Tokiwa, Y., J. Environ. Polym. Degrd. 1:65 (1993).

(30). Rosa, D.S., Filbo, R. P., Chui, Q.S.H., Calli, M.R, Guedes, C.G.F., Europ. Polym. J. 39:233 (2003).

(31). Rosa, D.S., Calil, M.R., Guedes, C.G.F., and Rodrigues, T.C., J. Polym. and Environ. 12:239 (2004).

(32). Duprer, I., David, C., Colpaert, Loutz, J-M, and Wauven, C.V., Macromol. Chem. Phys. 200: 2508 (1999).

(33). Molitoris, H.P., Moss, S.T., de-Koning, G.J.M., and Jendrossek, D., Appl. Microbiol. Biol. 46:570 (1996).Tsuji, H., and Suzuyoshi, K., Polym. Degrad. Stab. 75:347 (2002).

Downloads

Published

2007-08-20

How to Cite

Saad, G. R., Khalil, T. M., & Sabaa, M. W. (2007). Biodegradable Poly(ester-urethane)s Based on Poly[(R)-3- hydroxybutyrate] and Poly(ε-caprolactone) Blocks: Thermal, Mechanical and Biodegradation Behaviour. Eurasian Chemico-Technological Journal, 9(3), 231–242. https://doi.org/10.18321/ectj393

Issue

Section

Articles