Removal of Lignin from Pulp Waste Water's Black Liquor via By-Pass Cement Dust


  • S.E. Mohamed Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
  • M.G. Khalifa El-Tabbin Metallurgical Institute, Cairo, Egypt
  • S.A. Sayed Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
  • A.M. Kamel Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
  • M.E.H. Shalabi Central Metallurgical Research and Development Institute, Cairo, Egypt



The potential use of inexpensive and available by-pass cement dust as an inorganic sorbent for the removal of organic matter (lignin) from black liquor of pulp wastewater by adsorption methodology was investigated using the batch technique. The cement dust is found to remove lignin efficiently from black liquor (the untreated cement dust (70.47%), the thermally treated one at 1000 °C (78.63%), and chemically treated dust (80.62%). The factors affecting the uptake percentage such as time, dose, pH and temperature were investigated to assess the optimum conditions for lignin removal. X-ray patterns were studied to reveal the relationship between the main constituents of each cement dust phase (untreated, thermally and chemically treated) and lignin uptake. By applying Langmuir and Frendlich adsorption isotherms it was found that the adsorption process of lignin from black liquor on by-pass cement dust achieves Frendlich model, which suggests that adsorption is not restricted to one specific layer of sites but involves multi-layers. Also, stripping of lignin by using different strippers (organic, mineral acids, bases and salts) was investigated. The results obtained show that the organic strippers give high stripping percentage for cyclohexane (90.10%) because lignin is a non-polar compound that dissolves in non-polar solvents. In the case of acids, bases and salts the best results were obtained with much diluted solutions (0.001 mol/L). Stripping of lignin from by-pass cement dust is considered as a way of its recycling for different applications.


(1). Fengel, D., and Wegener, G., Wood Chemistry, Ultra Structure Reactions. Walter de Gruyter, Berlin, New York, U.S.A., 1989.

(2). Northy, R.A., ACS Symposium Series 476 Lowcost uses of lignin. In: Rowell, R.M., Schultz T.P., and Narayan, R. Eds. In Engineering Technologies for Materials and Chemicals from Biomass, 1990, p. 146-175.

(3). Gosselink, R.J., Abacherli, A., Semke, H., Malherbe, R., Kauper, P., Nadif, A., and VanDam, J. E.G., Ind. Crops Prod. 19:271-281 (2004).

(4). Sun, S., Tomkinson, J., Mao, F.C., and Sun, X. F., J. Appl. Polym. Sci. 79: 9-732 (2001).

(5). Scalbert, A., Guittet, E., Lallemand, J.Y., and Monties, B., Holzforschung 40 (2):119-127 (1986).

(6). Dence W.C., in Lin S.E., Dence W.C. (eds.), Methods in lignin chemistry, Determination of carboxylic groups, Springer-Verlag, Berlin-Heidelberg, 1992, pp. 3-6.

(7). Carmen, G.B., Dominique, B., Richard J.A.G., and Jan, E.G.V., Ind. Crops Prod. 20:205-218 (2004).

(8). Abacherli, A., Doppenberg, F., International patent PCT/IB98/00512, WO9842912 Method for preparing alkaline solutions containing aromatic polymers, (1998).

(9). Cruz, J. M., Dominguez, J. M., Dominguez, H., and Parajo, J.C., Food Chem. 67: 147-153 (1999).

(10). Rachel, P., Vincenzo, V., Carlo, B., Maurizio, D. A. and Teresa, V., Polym. J. 45:4159-4169 (2004).

(11). Lin, S.Y., Lebo, J.R.S., and Kirk-Othmer, Encyclopedia of Chemical Technology, New York: Wiley, 4 (1995).

(12). Glasser, W.G., and Sarkanen, S., ACS Symposium Series 398, American Chemical Society, Lignin: Properties and Materials., Washington, DC; 1989.

(13). Sanchez, C.G., and Exposito, A., Angew. Makromol. Chem. 272 (1): 65-70 (1999).

(14). Alexy, P., Korsakov, B., and Podstranka, G., Polym. J. 41 (13):4901-8 (2000).

(15). Glasse W., in Casey J.P. (ed.), Pulp and Paper Chemistry and Chemical Technology, 1981, p. 39.

(16). Kosikova, B., Revajova, A., and Demianova, V., Eur. Polym. J., (10):953-6 (1995).

(17). Kharade, A.Y., and Kale, D.D., J. Appl. Polym. Sci. 72(10):1321-6 (1999).

(18). Feldman, D., and Banu, D., J. Appl. Polym. Sci. 66(9):1731-44 (1997).

(19). Srivastavaka, G.S.I.M., J. Inst. Public Health Eng. India, part 2/3: 59-64 (1984).

(20). Rao, M.N., and Dutta, A. K., Waste Water Treatment, Oxford and IBH publishing Co. PVT. Ltd, New Delhi, 1987.

(21). Manisavakamn, Analysis and treatment, Industrial Effluents-Origin characteristics effects, Sakthi publication, Kovaipudur, (1987).

(22). Zanella, E.F., and Berben, S. A., Tappi J., 63 (3): 77-82 (1980).

(23). Walden, C.C., and Howard, T.E., Pulp Pap. Canada 82 (4): T 143-146 (1981).

(24). Springer, A., Industrial Environment Control, Pulp and Paper Industry, John Wiley, New York, 1985.

(25). Manjunnath, D.L. and Mehrot, R.I., Indian J. Environ. Health, 23(4): 309-315 (1981).

(26). Souchon, J. A. R., Voilley, A., and Grevillot, G., Separation Science and Technology 31:18 (1996).

(27). Sayed, A.S., and Zayed, M.A., Desalination 194: 90-100 (2006).

(28). Lathia, S.G., and Joyce, T.W., Tappi J., 61(10): 67-70 (1978).

(29). Dugal, H., Church, J.O., Leekley R.M., and Swanson, J. W., Tappi J., 59 (9): 71-74 (1976).

(30). Joyce, T.W., Dubey, G.A., and Webb, A.A., Tappi J., 62 (12):107-109 (1979).

(31). Beulker, S., and Jekel, M., Water Sci. Technol, 27 (11):193-199 (1993).

(32). Stephenson, R.J., and Duff, S.J.B., Water Res., 30(4):781-792 (1996).

(33). Mittal, A.K., and Mehrotra, I., Indian J. Environ. Health 23 (3):203-214 (1981).

(34). Nilgul, O., and Nihat, S.C., Proceedings of ICNP Trabzon, Turkey, 116-120 (2002).

(35). James, P.C., Pulp and Paper Chemistry and Chemical Technology, Inc., New York, USA., 1960.

(36) . Yang, X.T., Chai, X.S., Hou, Q., and Zhu, J.Y., Anal. Chim. Acta 474:69 (2002).




How to Cite

Mohamed, S., Khalifa, M., Sayed, S., Kamel, A., & Shalabi, M. (2009). Removal of Lignin from Pulp Waste Water’s Black Liquor via By-Pass Cement Dust. Eurasian Chemico-Technological Journal, 11(1), 51–59.