Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies

Authors

  • S. V. Aydinyan Yerevan State University, A. Manukyan str., 1, Yerevan, 0025, Armenia
  • H. V. Kirakosyan A.B. Nalbandyan Institute of Chemical Physics NAS RA, P. Sevak str., 5/2, Yerevan, 0014, Armenia
  • M. K. Zakaryan Yerevan State University, A. Manukyan str., 1, Yerevan, 0025, Armenia; A.B. Nalbandyan Institute of Chemical Physics NAS RA, P. Sevak str., 5/2, Yerevan, 0014, Armenia
  • L. S. Abovyan A.B. Nalbandyan Institute of Chemical Physics NAS RA, P. Sevak str., 5/2, Yerevan, 0014, Armenia
  • S. L. Kharatyan Yerevan State University, A. Manukyan str., 1, Yerevan, 0025, Armenia; A.B. Nalbandyan Institute of Chemical Physics NAS RA, P. Sevak str., 5/2, Yerevan, 0014, Armenia
  • A. Peikrishvili Tsulukidze Institute of Mining and Technology, E. Mindeli str., 7, Tbilisi, 0186, Georgia; F.Tavadze Institute of Metallurgy and Materials Science, E. Mindeli str., 10, Tbilisi, 0186, Georgia
  • G. Mamniashvili Andronikashvili Institute of Physics, Tamarashvili St., 6, Tbilisi, 0186, Georgia
  • B. Godibadze Tsulukidze Institute of Mining and Technology, E. Mindeli str., 7, Tbilisi, 0186, Georgia
  • E. Sh. Chagelishvili Tsulukidze Institute of Mining and Technology, E. Mindeli str., 7, Tbilisi, 0186, Georgia
  • D. R. Lesuer Lawrence Livermore National Laboratory, East Ave., 7000, Livermore, CA 94550-9234, USA
  • M. Gutierrez Tecnalia Research Institute, Mikeletegi Paselekua 1-3, San Sebastian, 20009, Spain

DOI:

https://doi.org/10.18321/ectj763

Keywords:

tungsten-copper nanocomposite, SHS, hot explosive consolidation, microhardness, mechanical properties

Abstract

Manufacturing W-Cu composite nanopowders was performed via joint reduction of CuO and WO3 oxides with various ratios (W:Cu = 2:1, 1:1, 1:3, 1:13.5) using combined Mg–C reducer. Combustion synthesis was used to synthesize homogeneous composite powders of W-Cu and hot explosive consolidation (HEC) technique was utilized to fabricate dense compacts from ultrafine structured W-Cu powders. Compact samples obtained from nanometer sized SHS powders demonstrated weak relation between the susceptibility and the applied magnetic field in comparison with the W and Cu containing micrometer grain size of metals. The density, microstructural uniformity and mechanical properties of SHS&HEC prepared samples were also evaluated. Internal friction (Q-1) and Young modulus (E) of fabricated composites studied for all samples indicated that the temperature 1000 °С is optimal for full annealing of microscopic defects of structure and internal stresses. Improved characteristics for Young modulus and internal friction were obtained for the W:Cu = 1:13.5 composite. According to microhardness measurement results, W-Cu nanopowders obtained by SHS method and compacted by HEC technology were characterized by enhanced (up to 85%) microhardness.

References

(1). P. Chen, G. Luo, Q. Shen, M. Li, L. Zhang, Mater. Des. 46 (2013) 101–105. <a href="http://doi.org/10.1016/j.matdes.2012.09.034">Crossref </a>

(2). L. Duan, W. Lin, J. Wang, G. Yang, Int. J. Refract. Met. H. 46 (2014) 96–100. <a href="http://doi.org/10.1016/j.ijrmhm.2014.05.022">Crossref </a>

(3). L. Zhang, W. Chen, G. Luo, P. Chen, Q. Shen, C. Wang, J. Alloy. Compd. 588 (2014) 49–52. <a href="http://doi.org/10.1016/j.jallcom.2013.11.003">Crossref </a>

(4). W. Chen, Zh. Kang, H. Shen, B. Ding, Rare Met. 25 (2006) 37–42. <a href="http://doi.org/10.1016/S1001-0521(06)60011-9">Crossref </a>

(5). S.H. Hong, B.K. Kim, Mater. Lett. 57 (2003) 2761–2767. <a href="http://doi.org/10.1016/S0167-577X(03)00071-5">Crossref </a>

(6). G. Pintsuk, S.E. Brünings, J.E. Döring, J. Linke, I. Smid, L. Xue, Fusion Eng. Des. 66 (2003) 237– 240. <a href="http://doi.org/10.1016/S0920-3796(03)00220-5">Crossref </a>

(7). D. Li, Z. Liu, Y. Yu, E. Wang, Int. J. Refract. Met. H. 26 (2008) 286–289. <a href="http://doi.org/10.1016/j.ijrmhm.2007.06.004">Crossref </a>

(8). G. Gusmano, A. Bianco, R. Polini, P. Magistris, G. Marcheselli, J. Mater. Sci. 36 (2001) 901– 907. <a href="http://doi.org/10.1023/A:1004894900840">Crossref </a>

(9). J. Cheng, C. Lei, E. Xiong, Y. Jiang, Y. Xia, J. Alloy. Compd. 421 (2006) 146–150. <a href="http://doi.org/10.1016/j.jallcom.2005.08.087">Crossref </a>

(10). I. Sabirov, R. Pippan, Scripta Mater. 52 (2005) 1293–1298. <a href="http://doi.org/10.1016/j.scriptamat.2005.02.017">Crossref </a>

(11). M. Ardestani, H.R. Rezaie, H. Arabi, H. Razavizadeh, Int. J. Refract. Met. H. 27 (2009) 862–867. <a href="http://doi.org/10.1016/j.ijrmhm.2009.04.004 ">Crossref </a>

(12). Z.J. Zhou, Y.S. Kwon, J. Mater. Process Tech. 168 (2005) 107–111. <a href="http://doi.org/10.1016/j.jmatprotec.2004.11.008">Crossref </a>

(13). G.G. Lee, G.H. Ha, B.K. Kim, Powder Metall. 43 (2000) 79–82. <a href="http://doi.org/10.1179/pom.2000.43.1.79">Crossref </a>

(14). L.J. Kecskes, B.R. Klotz, K.C. Cho, R.J. Dowding, M.D. Trexler, Metall. Mater. Trans. A 32 (2001) 2885–2893. <a href="http://doi.org/10.1007/s11661-001-1039-0">Crossref </a>

(15). S.N. Alam, Mat. Sci. Eng. A 433 (2006) 161– 168. <a href="http://doi.org/10.1016/j.msea.2006.06.049">Crossref </a>

(16). W. Chen, L. Dong, J. Wang, Y. Zuo, S. Ren, Y. Fu, Sci. Rep. 7 (2017) 17836

(17). S.S. Ryu, Y.D. Kim, I.H. Moon, J. Alloy. Compd. 335 (2002) 233–240. <a href="http://doi.org/10.1016/S0925-8388(01)01805-9">Crossref </a>

(18). L. Shu-dong, Y. Jian-hong, G. Ying-Li, P. Yuan-dong, L. Li-ya, R. Jun-ming, J. Alloy. Compd. 473 (2009) L5-L9. <a href="http://doi.org/10.1016/j.jallcom.2008.05.038 ">Crossref </a>

(19). B.K. Kim, C.J. Choi, Scripta Mater. 44 (2001) 2161–2164. <a href="http://doi.org/10.1016/S1359-6462(01)00896-X ">Crossref </a>

(20). Y. Zhou, Q.X. Sun, R. Liu, X.P. Wang, C.S. Liu, Q.F. Fang, J. Alloy. Compd. 547 (2013) 18–22. <a href="http://doi.org/10.1016/j.jallcom.2012.08.143">Crossref </a>

(21). S.V. Aydinyan, H.V. Kirakosyan, S.L. Kharatyan, Int. J. Refract. Met. H. 54 (2016) 455–63. <a href="http://doi.org/10.1016/j.ijrmhm.2015.09.002">Crossref </a>

(22). T.T. Minasyan, S.V. Aydinyan, S.L. Kharatyan, Chemical Journal of Armenia 69 (2016) 47–57. ISSN: 0515-9628

(23). H.V. Kirakosyan, S.V. Aydinyan, S.L. Kharatyan, Int. J Self-Propag. High-Temp. Synth. 25 (2016) 215–223. <a href="http://doi.org/10.3103/S1061386216040051 ">Crossref </a>

(24). M. Zakaryan, H. Kirakosyan, S. Aydinyan, S. Kharatyan, Int. J. Refract. Met. H. 64 (2017) 176–183. <a href="http://doi.org/10.1016/j.ijrmhm.2016.12.003">Crossref </a>

(25). L.J. Kecskes, Hot Explosive Consolidation of Refractory Metals and Alloys, U. S. Patent 5,996,385, 07 Dec 1999, The United States Of America As Represented By The Secretary Of The Army.

(26). A.B. Peikrishvili, G.I. Mamniashvili, B. Godibadze, E.S. Chagelishvili, T. Gegechkori, M.V. Tsiklauri, European Congress and Exhibition on Powder Metallurgy, The European Powder Metallurgy Association, Shrewsbury, 2013, p. 1.

(27). L.J. Kecskes, I.W. Hall, J. Mater. Process Tech. 94 (1999) 247–260. <a href="http://doi.org/10.1016/S0924-0136(99)00077-1">Crossref </a>

(28). A. Peikrishvili, B. Godibadze, E. Chagelishvili, M. Tsiklauri, A. Dgebuadze, European Chemical Bulletin (Budapest) 4 (1) (2015) 37–42.

(29). L.I. Tushinsky, I. Kovensky, A. Plokhov, V. Sindeyev, P. Reshedko Coated Metal. Engineering Materials. Springer, Berlin, Heidelberg (2002) 85–131. <a href="http://doi.org/10.1007/978-3-662-06276-0_2 ">Crossref </a>

(30). A.A. Shiryaev, Int. J Self-Propag. High-Temp. Synth. 4 (1995) 351–362.

(31). S.L. Kharatyan, H.A. Chatilyan, A.G. Merzhanov, Khimicheskaya Fizika [Russ. J. Phys. Chem. B] 7 (1988) 800–806 (in Russian).

(32). S.L. Kharatyan, H.A. Chatilyan, L.H. Arakelyan, Mater. Res. Bull. 43 (2008) 897–906. <a href="http://doi.org/10.1016/j.materresbull.2007.05.003">Crossref </a>

(33). J.Li, N. Deng, P. Wu, Z. Zhou, J. Alloy. Compd. 770 (2019) 405–410. <a href="http://doi.org/10.1016/j.jallcom.2018.08.158">Crossref </a>

Downloads

Published

2018-12-21

How to Cite

Aydinyan, S. V., Kirakosyan, H. V., Zakaryan, M. K., Abovyan, L. S., Kharatyan, S. L., Peikrishvili, A., … Gutierrez, M. (2018). Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies. Eurasian Chemico-Technological Journal, 20(4), 301–309. https://doi.org/10.18321/ectj763

Issue

Section

Articles