Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies
DOI:
https://doi.org/10.18321/ectj763Keywords:
tungsten-copper nanocomposite, SHS, hot explosive consolidation, microhardness, mechanical propertiesAbstract
Manufacturing W-Cu composite nanopowders was performed via joint reduction of CuO and WO3 oxides with various ratios (W:Cu = 2:1, 1:1, 1:3, 1:13.5) using combined Mg–C reducer. Combustion synthesis was used to synthesize homogeneous composite powders of W-Cu and hot explosive consolidation (HEC) technique was utilized to fabricate dense compacts from ultrafine structured W-Cu powders. Compact samples obtained from nanometer sized SHS powders demonstrated weak relation between the susceptibility and the applied magnetic field in comparison with the W and Cu containing micrometer grain size of metals. The density, microstructural uniformity and mechanical properties of SHS&HEC prepared samples were also evaluated. Internal friction (Q-1) and Young modulus (E) of fabricated composites studied for all samples indicated that the temperature 1000 °С is optimal for full annealing of microscopic defects of structure and internal stresses. Improved characteristics for Young modulus and internal friction were obtained for the W:Cu = 1:13.5 composite. According to microhardness measurement results, W-Cu nanopowders obtained by SHS method and compacted by HEC technology were characterized by enhanced (up to 85%) microhardness.
References
(2). L. Duan, W. Lin, J. Wang, G. Yang, Int. J. Refract. Met. H. 46 (2014) 96–100. <a href="http://doi.org/10.1016/j.ijrmhm.2014.05.022">Crossref </a>
(3). L. Zhang, W. Chen, G. Luo, P. Chen, Q. Shen, C. Wang, J. Alloy. Compd. 588 (2014) 49–52. <a href="http://doi.org/10.1016/j.jallcom.2013.11.003">Crossref </a>
(4). W. Chen, Zh. Kang, H. Shen, B. Ding, Rare Met. 25 (2006) 37–42. <a href="http://doi.org/10.1016/S1001-0521(06)60011-9">Crossref </a>
(5). S.H. Hong, B.K. Kim, Mater. Lett. 57 (2003) 2761–2767. <a href="http://doi.org/10.1016/S0167-577X(03)00071-5">Crossref </a>
(6). G. Pintsuk, S.E. Brünings, J.E. Döring, J. Linke, I. Smid, L. Xue, Fusion Eng. Des. 66 (2003) 237– 240. <a href="http://doi.org/10.1016/S0920-3796(03)00220-5">Crossref </a>
(7). D. Li, Z. Liu, Y. Yu, E. Wang, Int. J. Refract. Met. H. 26 (2008) 286–289. <a href="http://doi.org/10.1016/j.ijrmhm.2007.06.004">Crossref </a>
(8). G. Gusmano, A. Bianco, R. Polini, P. Magistris, G. Marcheselli, J. Mater. Sci. 36 (2001) 901– 907. <a href="http://doi.org/10.1023/A:1004894900840">Crossref </a>
(9). J. Cheng, C. Lei, E. Xiong, Y. Jiang, Y. Xia, J. Alloy. Compd. 421 (2006) 146–150. <a href="http://doi.org/10.1016/j.jallcom.2005.08.087">Crossref </a>
(10). I. Sabirov, R. Pippan, Scripta Mater. 52 (2005) 1293–1298. <a href="http://doi.org/10.1016/j.scriptamat.2005.02.017">Crossref </a>
(11). M. Ardestani, H.R. Rezaie, H. Arabi, H. Razavizadeh, Int. J. Refract. Met. H. 27 (2009) 862–867. <a href="http://doi.org/10.1016/j.ijrmhm.2009.04.004 ">Crossref </a>
(12). Z.J. Zhou, Y.S. Kwon, J. Mater. Process Tech. 168 (2005) 107–111. <a href="http://doi.org/10.1016/j.jmatprotec.2004.11.008">Crossref </a>
(13). G.G. Lee, G.H. Ha, B.K. Kim, Powder Metall. 43 (2000) 79–82. <a href="http://doi.org/10.1179/pom.2000.43.1.79">Crossref </a>
(14). L.J. Kecskes, B.R. Klotz, K.C. Cho, R.J. Dowding, M.D. Trexler, Metall. Mater. Trans. A 32 (2001) 2885–2893. <a href="http://doi.org/10.1007/s11661-001-1039-0">Crossref </a>
(15). S.N. Alam, Mat. Sci. Eng. A 433 (2006) 161– 168. <a href="http://doi.org/10.1016/j.msea.2006.06.049">Crossref </a>
(16). W. Chen, L. Dong, J. Wang, Y. Zuo, S. Ren, Y. Fu, Sci. Rep. 7 (2017) 17836
(17). S.S. Ryu, Y.D. Kim, I.H. Moon, J. Alloy. Compd. 335 (2002) 233–240. <a href="http://doi.org/10.1016/S0925-8388(01)01805-9">Crossref </a>
(18). L. Shu-dong, Y. Jian-hong, G. Ying-Li, P. Yuan-dong, L. Li-ya, R. Jun-ming, J. Alloy. Compd. 473 (2009) L5-L9. <a href="http://doi.org/10.1016/j.jallcom.2008.05.038 ">Crossref </a>
(19). B.K. Kim, C.J. Choi, Scripta Mater. 44 (2001) 2161–2164. <a href="http://doi.org/10.1016/S1359-6462(01)00896-X ">Crossref </a>
(20). Y. Zhou, Q.X. Sun, R. Liu, X.P. Wang, C.S. Liu, Q.F. Fang, J. Alloy. Compd. 547 (2013) 18–22. <a href="http://doi.org/10.1016/j.jallcom.2012.08.143">Crossref </a>
(21). S.V. Aydinyan, H.V. Kirakosyan, S.L. Kharatyan, Int. J. Refract. Met. H. 54 (2016) 455–63. <a href="http://doi.org/10.1016/j.ijrmhm.2015.09.002">Crossref </a>
(22). T.T. Minasyan, S.V. Aydinyan, S.L. Kharatyan, Chemical Journal of Armenia 69 (2016) 47–57. ISSN: 0515-9628
(23). H.V. Kirakosyan, S.V. Aydinyan, S.L. Kharatyan, Int. J Self-Propag. High-Temp. Synth. 25 (2016) 215–223. <a href="http://doi.org/10.3103/S1061386216040051 ">Crossref </a>
(24). M. Zakaryan, H. Kirakosyan, S. Aydinyan, S. Kharatyan, Int. J. Refract. Met. H. 64 (2017) 176–183. <a href="http://doi.org/10.1016/j.ijrmhm.2016.12.003">Crossref </a>
(25). L.J. Kecskes, Hot Explosive Consolidation of Refractory Metals and Alloys, U. S. Patent 5,996,385, 07 Dec 1999, The United States Of America As Represented By The Secretary Of The Army.
(26). A.B. Peikrishvili, G.I. Mamniashvili, B. Godibadze, E.S. Chagelishvili, T. Gegechkori, M.V. Tsiklauri, European Congress and Exhibition on Powder Metallurgy, The European Powder Metallurgy Association, Shrewsbury, 2013, p. 1.
(27). L.J. Kecskes, I.W. Hall, J. Mater. Process Tech. 94 (1999) 247–260. <a href="http://doi.org/10.1016/S0924-0136(99)00077-1">Crossref </a>
(28). A. Peikrishvili, B. Godibadze, E. Chagelishvili, M. Tsiklauri, A. Dgebuadze, European Chemical Bulletin (Budapest) 4 (1) (2015) 37–42.
(29). L.I. Tushinsky, I. Kovensky, A. Plokhov, V. Sindeyev, P. Reshedko Coated Metal. Engineering Materials. Springer, Berlin, Heidelberg (2002) 85–131. <a href="http://doi.org/10.1007/978-3-662-06276-0_2 ">Crossref </a>
(30). A.A. Shiryaev, Int. J Self-Propag. High-Temp. Synth. 4 (1995) 351–362.
(31). S.L. Kharatyan, H.A. Chatilyan, A.G. Merzhanov, Khimicheskaya Fizika [Russ. J. Phys. Chem. B] 7 (1988) 800–806 (in Russian).
(32). S.L. Kharatyan, H.A. Chatilyan, L.H. Arakelyan, Mater. Res. Bull. 43 (2008) 897–906. <a href="http://doi.org/10.1016/j.materresbull.2007.05.003">Crossref </a>
(33). J.Li, N. Deng, P. Wu, Z. Zhou, J. Alloy. Compd. 770 (2019) 405–410. <a href="http://doi.org/10.1016/j.jallcom.2018.08.158">Crossref </a>
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.