Saccharification Kinetics at Optimised Conditions of Tapioca by Glucoamylase Immobilised on Mesostructured Cellular Foam Silica


  • J. Agustian Department of Chemical Engineering, Universitas Lampung, Indonesia
  • L. Hermide Department of Chemical Engineering, Universitas Lampung, Indonesia



As insoluble substrates such as tapioca can be used to make chemical compounds, saccharification of tapioca by glucoamylase immobilised on mesostructured cellular foam (MCF) silica using Box-Behnken Design of experiment was conducted to optimize this process so that the experimental results can be used to develop large-scale operations. The experiments gave dextrose equivalent (DE) values of 6.15–69.50% (w/w). Factors of pH and temperature affected the process highly. The suggested quadratic polynomial model is significant and considered acceptable (R2 = 99.78%). Justification of the model confirms its validity and adequacy where the predicted DE shows a good agreement with the experimental results. The kinetic constants (Vmax, KM) produced by the immobilised enzyme differed highly from the values yielded by free glucoamylase indicating reduction of substrate access to enzyme active sites had occurred.


(1). B. Vlad-Oros, G. Preda, Z. Dudas, M. Dragomirescu, A. Chiriac, Proc. Appl. Ceram. 1 (2007) 63–67. Crossref

(2). R. George, S. Gopinath, S. Sugunan, Bull. Chem. React. Eng. Cat. 8 (2013) 70–76. Crossref

(3). R. George, S. Sugunan, J. Mol. Catal. B: Enzym. 106 (2014) 81–89. Crossref

(4). K. Szymanska, J. Bryjak, J. Mrowiec-Białon, J.B. Jarzebski, Micropor. Mesopor. Mat. 99 (2007) 167–175. Crossref

(5). D.C. Montgomery, “Design and analysis of experiments”. Fifth ed., John Wiley & Sons Inc., London, 2001.

(6). A. Soyer, E. Bayraktar, U. Mehmetoglu, Prep. Biochem. Biotech. 40 (2010) 389–404. Crossref

(7). L. Hermida, A.Z. Abdullah, A.R. Mohamed, “Nickel functionalized mesostructured cellular foam (MCF) silica as a catalyst for solventless deoxygenation of palmitic acid to produce diesel-like hydrocarbons”, Materials and processes for energy: communicating current research and technological development, 2013, pp. 312–319.

(8). N.B. Milosavić, R.M. Prodanović, S.M. Jovanović, Z.M. Vujčić, Enzyme Microb. Tech. 40 (2007) 1422–1426. Crossref

(9). N. Milosavić, R. Prodanović, S. Jovanović, I. Novakovic, Z. Vujčić, J. Serb. Chem. Soc. 70 (5) (2005) 713–719.

(10). C. Guo, M. Yunhui, S. Pengfei, F. Baishan, Biochem. Eng. J. 67 (2012) 120–125. Crossref

(11). H. Kamal, G.M. Sabry, S. Lofty, N.M. Abdallah, J. Rosiak, A.H. El-Sayed, J. Macromol. Sci. A 45 (2008) 65–75. Crossref

(12). G. Zhao, Y. Li, J. Wang, H. Zhu, Appl. Microbiol. Biot. 91 (2011) 591–601. Crossref

(13). G. Zhao, J. Wang, Y. Li, X. Chen, Y. Liu, J. Phys. Chem. C 115 (2011) 6350–6359. Crossref

(14). J. Wang, G. Zhao, Y. Li, Y. Liu, H. Hou, Appl. Microbiol. Biot. 97 (2013) 681–692. Crossref

(15). C.R. Baiz, M Reppert, A. Tokmakoff. An Introduction to Protein 2D IR Spectroscopy. In: Fayer MD, editor. Ultrafast Infrared Vibrational Spectroscopy. CRC Press; New York: 2013. pp. 361–404.

(16). D.A. Butterfield, D. Bhattacharyya, S. Dannert, L. Bachas, J. Membr. Sci. 181 (2001) 29–37. Crossref

(17). A. Dwevedi, Basics of Enzyme Immobilization. In: Enzyme Immobilization. Springer, Cham, 2016. Crossref

(18). G.A. Kovalenko, L.V. Perminova, T.G. Terent’eva, 374–378. Crossref

(19). W. Cao, C. Zhang, P. Hong, H. Ji, Food Chem. 109 (2008) 176–183. Crossref

(20). I.A.W. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mat. 153 (2008) 709–717. Crossref

(21). A.H. Sebayang, M.H. Hassan, H.C. Ong, S. Dharma, A.S. Silitonga, F. Kusumo, T.M.I. Mahlia, A.H. Bahar, Energies 10 (2017) 35–40. Crossref

(22). D. Mudgil, S. Barak, B.S. Khatkar, J. Food Sci. Technol. 51 (2012) 1600–1605.

(23). R.M. Collares, L.V.S. Miklasevicius, M.M. Bassaco, N.P.G. Salau, M.A. Mazutti, D.A. Bisognin, L.M. Terra, J. Zhejiang Univ.-Sc. B 13 (2012) 579–586. Crossref

(24). N. Nadir, M. Mel, M.I.A. Karim, R.M. Yunus. The Institution of Engineers Malaysia 71 (3) (2010) 26–34.

(25). N. Peatciyammal, B. Balachandar, M.D. Kumar, K. Tamilarasan, C. Muthukumaran, IJBET 4 (2010) 126–130. Crossref

(26). N.B. Milosavić, R.M. Prodanović, S.M. Jovanović, Z.M. Vujčić, Acta Periodica Technologica 35 (2004) 207–214. Crossref

(27). Y.N. Shariffa, A.A. Karim, A. Fazilah, I.S.M. Zaidul, Food Hydrocolloid. 23 (2009) 434–440. Crossref

(28). G. Zhao, J. Wang, Y. Li, H. Huang, X. Chen, Biochem. Eng. J. 68 (2012) 159–166. Crossref

(29). M.J. Anderson, P.J. Whitcomb, "DOE Simplified: Practical tools for effective experimentation", Second ed., Productivity Press, New York, 2007.

(30). M.S. Montilha, M.F. Sbroggio, V.R.G. Figueireido, E.I. Ida, L.E. Kurozawa, Int. Food Res. J. 24 (2017) 1067–1074.

(31). R.A. Copeland, "Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis", Wiley-VCH Inc., New York, 2000.

(32). H. Bisswanger, “Enzyme Kinetics: Principles and Methods”, Wiley-VCH Verlag GmbH., Weinheim, 2002.

(33). G. Bayramoglu, M. Yilmaz, M.Y. Arica, Food Chem. 84 (2004) 591–599. Crossref

(34). T. Kalburcu, M.N. Tuzmen, S. Akgol, A. Denizli, Turk. J. Chem. 38 (2014) 28–40. Crossref

(35). E. Demirkan, S. Dincbas, N. Sevinc, F. Ertan, Romanian Biotech. Lett. 16 (2011) 6690–6701.

(36). P.C. Ashly, M.J. Joseph, P.V. Mohanan, Food Chem. 127 (2011)

–1813. Crossref




How to Cite

Agustian, J., & Hermide, L. (2018). Saccharification Kinetics at Optimised Conditions of Tapioca by Glucoamylase Immobilised on Mesostructured Cellular Foam Silica. Eurasian Chemico-Technological Journal, 20(4), 311–318.