Simulation of Hydrogen Isotopes Accumulation Processes in Materials in the Presence of Chemical Traps

Authors

  • T.V. Kulsartov Kazakh-British Technical University, 59, Tole bi str., Almaty, Kazakhstan
  • Zh.A. Zaurbekova Kazakh-British Technical University, 59, Tole bi str., Almaty, Kazakhstan
  • Ye.V. Chikhray Kazakh-British Technical University, 59, Tole bi str., Almaty, Kazakhstan
  • M.T. Gabdullin Kazakh-British Technical University, 59, Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj783

Keywords:

hydrogen, accumulation, chemical traps, diffusion, simulation

Abstract

 The accumulation of hydrogen inside a solids occurs in traps of a different nature. The following things are known in addition to finding hydrogen in interstitial sites: dislocation mechanisms of hydrogen storage, micropores and microcracks, sorption on the free surface of microdefects, chemical traps with the formation of hydrides and other compounds, both with matrix material and with impurities or components of alloys. It is established that each type of trap has its own binding energy of hydrogen, which can vary from 0.2 eV for hydrogen gas in microdefects to several eV for hydrogen chemically bound in traps. Measurements of the distribution of hydrogen concentration dissolved in a solid body over binding energies provide a clue as to the understanding of hydrogen impact on mechanical properties and to the development of technologies for controlling the materials properties during their production and operation. The paper presents the results of simulation experiments on hydrogen saturation of materials in the presence of chemical traps. The proposed model, based on the numerical solution of the diffusion equation in the presence of irreversible capture, made it possible to describe the absorption process and determine the activation energies of hydrogen interaction with the material.

References

(1). P.V. Danckwerts, Trans. Farad. Soc. 47 (1951) 1014‒1019. Crossref

(2). I.N. Bekman, Mathematics of diffusion. Schoolbook. М.: OntoPrint, 2016. 400 p.

(3). L. Li, B. Song, J. Cheng, Z. Yang, Int. J. Hydrogen Energ. 43 (2018) 17353‒17363. Crossref

(4). T. Schaffner, A. Hartmaier, V. Kokotin, M. Pohl, J. Alloy. Compd. 746 (2018) 557‒566. Crossref

(5). W.T. Geng, V. Wang, J. Li, N. Ishikawa, H. Kimizuka, K. Tsuzaki, S. Ogata, Scripta Mater. 149 (2018) 79‒83. Crossref

(6). Z. Zhang, K.L. Moore, G. McMahon, R. Morana, M. Preuss, Corros. Sci. 146 (2018) 58‒69. Crossref

(7). T. Kulsartov, V. Shestakov, Ye. Chikhray, I. Kenzhina, S. Askerbekov, Yu.N. Gordienko, Yu. Ponkratov, Z. Zaurbekova, Fusion Eng. Des. 113 (2016) 303‒307. Crossref

(8). G. Schaumann, J. Völki, G. Alefeld, Phys. Stat. Sol. 42 (1970) 401. Crossref

(9). D.J. Pine and R.M. Cotts, Phys. Rev. B 28 (1983) 641. Crossref

(10). D.J. Pine and R.M. Cotts, Diffusion of hydrogen in vanadium-based BCC alloys”, in Electronic Structure and properties of hydrogen in metalls, plenum Press, New York, (1983) 465 p.

(11). D.T. Peterson and H.M. Herro, Metall. Mater. Trans. A 18 (1987) 249‒254. Crossref

(12). H. Bleichert, H. Wenzl, Phys. Stat. Sol. B 144 (1987) 361‒373. Crossref

(13). M.D. Dolan, K.E. Lamb, J.B. Evtimova, D.M. Viano, Int. J. Hydrogen Energ. 42 (2017) 24183‒24188. Crossref

(14). А.А. Smirnov. Teorija diffuzii v splavah vnedrenija [Theory of Diffusion in Embedding Alloys] Kiev, Naukova Dumka, 1982, 168 p. (in Russian).

(15). T. Schober and W. Pesch, Z. Phys. Chem. 114 (1979) 21‒28. Crossref

(16). J.F. Smith, D. T. Peterson, J. Phase Equilib. Diff. 3 (1982) 49. Crossref

(17). Y. Lu, M. Gou, R. Bai, Yixin Zhang, Zheng Chen, Int. J. Hydrogen Energ. 42 (2017) 22925‒22932. Crossref

(18). M.L. Martin, A. Pundt, R. Kirchheim, Acta Mater. 155 (2018) 262‒267. Crossref

Downloads

Published

2019-02-20

How to Cite

Kulsartov, T., Zaurbekova, Z., Chikhray, Y., & Gabdullin, M. (2019). Simulation of Hydrogen Isotopes Accumulation Processes in Materials in the Presence of Chemical Traps. Eurasian Chemico-Technological Journal, 21(1), 25–28. https://doi.org/10.18321/ectj783

Issue

Section

Articles