Cu-Expanded Graphite Composite Material Preparation and Thermal Properties

Authors

  • I. M. Karzov Chemistry Department of Moscow State University, 119234, 1/11, Leninskie gory, Moscow, Russia
  • O. N. Shornikova Chemistry Department of Moscow State University, 119234, 1/11, Leninskie gory, Moscow, Russia
  • S. V. Filimonov Chemistry Department of Moscow State University, 119234, 1/11, Leninskie gory, Moscow, Russia
  • A. P. Malakho Institute of New Carbon Materials and Technologies, 119234, 1/11, Leninskie gory, Moscow, Russia
  • V. V. Avdeev Institute of New Carbon Materials and Technologies, 119234, 1/11, Leninskie gory, Moscow, Russia

DOI:

https://doi.org/10.18321/ectj671

Abstract

A composite material based on expanded graphite (EG) and copper compounds was obtained by natural graphite oxidation with 95% nitric acid, copper (II) nitrate and granular carbamide addition with further rapid heat treatment at three different exfoliation temperatures: 800, 1000 and 1200 °С. It was found that the composition of copper containing graphite material depends on the temperature and the atmosphere of thermal expansion. The formation of copper oxides can be eliminated if rapid heat treatment is conducted in nitrogen at 1200 °С. Thermal conductive properties: thermal diffusivity and specific heat capacity of obtained Cu-expanded graphite samples were measured. It was revealed that the dependence of thermal conductivity (TC) of Cu-graphite material has non-linear character in the studied range of copper content. The incorporation of 3% copper into expanded graphite allows to increase its thermal conductivity by 20% while the further Cu content growth leads to the TC decrease from 6 to 4.5 W/(m∙K). The specific heat capacity is constant at ω(Cu)<3% and reduces in the range (3‒8)% Cu. The advantage of proposed technique of Cu-expanded graphite materials preparation is exclusion graphite intercalation compounds hydrolysis step with further drying because of carbamide addition.

 

References

[1]. N.E. Sorokina, A.V. Redchitz, S.G. Ionov, V.V. Avdeev, J. Phys. Chem. Solids 67 (2006) 1202‒1204. <a href="HTTPS://DOI.ORG/10.1016/j.jpcs.2006.01.048">Crossref</a>

[2]. W. Li, Ch. Han, W. Liu, M. Zhang, K. Tao, Catal. Today 125 (2007) 278‒281. <a href="HTTPS://DOI.ORG/10.1016/j.cattod.2007.01.035">Crossref</a>

[3]. M. Toyoda, M. Inagaki, Carbon 38 (2000) 199‒210. <a href=«HTTPS://DOI.ORG/10.1016/S0008-6223(99)00174-8">Crossref</a>

[4]. M.A. Lutfullin, O.N. Shornikova, A.V. Vasiliev, K.V. Pokholok, V.A. Osadchaya, M.I. Saidaminov, N.E. Sorokina, V.V. Avdeev, Carbon 66 (2014) 417‒425. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2013.09.017">Crossref</a>

[5]. M.D. Smalc, G.D. Shives, R.A. Reynolds III. Patent US 6982874 B2, 2006.

[6]. D.D. Chung, Mater Sci. 51 (2016) 554‒568. <a href="HTTPS://DOI.ORG/10.1007/s10853-015-9284-6">Crossref</a>

[7]. I.M. Afanasov, O.N. Shornikova, D.A. Kirilenko, I.I. Vlasov, L. Zhang, J. Verbeeck, V.V. Avdeev, G.V. Tendeloo, Carbon 48 (2010) 1858‒1865. <a href="HTTPS://DOI.ORG/10.1016/j.carbon.2010.01.022">Crossref</a>

[8]. A.V. Ivanov, S.V. Filimonov, O.N. Shornikova, A.P. Malakho, Russ. Chem. Bull. 1 (2016) 282‒286. <a href="HTTPS://DOI.ORG/10.1007/s11172-016-1298-y">Crossref</a>

[9]. M. Koebel, E. Strutz, Ind. Eng. Chem. Res. 42 (2003) 2093–2100. <a href="HTTPS://DOI.ORG/10.1021/ie020950o">Crossref</a>

[10]. S.K. Ruy, W.K. Lee, S.J. Park, Carbon Science 5 (2004) 180–185.

[11]. R.J. Lewis, Sax's Dangerous Properties of Industrial Materials, 5 Volume Set, 12th Edition. Van Nostrand Reinhold: N.Y., 2012, p. 5862. ISBN: 978-0-470-62325-1

[12]. F. Habashi, Handbook of Extractive Metallurgy, Wiley-VCH, 1997, p. 2426.

[13]. J. Kováčik, S. Emmer, J. Bielek, Int. J. Ther. Sci. 90 (2015) 298‒302. <a href="HTTPS://DOI.ORG/10.1016/j.ijthermalsci.2014.12.017">Crossref</a>

[14]. A Mazloum, J Kovacik, S. Emmer, I. Sevostianov, Mater. Sci. 51 (2016) 7977‒7990. <a href="HTTPS://DOI.ORG/10.1007/s10853-016-0067-5">Crossref</a>

[15]. T. Hutsch, T. Schubert, T. Weißgarber, B. Kieback, Innovative Metal-Graphite Composites as Thermally Conducting Materials, Proceedings of the World PM2010 Congress held in Florence, Italy, 10‒14 October 2010, Florence, 5 (2010) p. 361. ISBN: 978-1-899072-19-4

[16]. J. Kováčik, S. Emmer, J. Bielek, Kovove Materialy 42 (2004) 265‒374.

[17]. D. Chung, Appl. Therm. Eng. 21 (2001) 1593‒1605. <a href="HTTPS://DOI.ORG/10.1016/S1359-4311(01)00042-4">Crossref</a>

[18]. Y. Zhu, H. Bai, C. Xue, R. Zhou, Q. Xu, P. Tao, C. Wang, J. Wang, N. Jiang, RSC Adv. 6 (2016) 98190‒98196. <a href="HTTPS://DOI.ORG/10.1039/C6RA17804A">Crossref</a>

[19]. I. Firkowska, A. Boden, B. Boerner, S. Reich, Nano Lett. 15 (2015) 4745‒4751. <a href="HTTPS://DOI.ORG/10.1021/acs.nanolett.5b01664">Crossref</a>

Downloads

Published

2017-09-15

How to Cite

Karzov, I. M., Shornikova, O. N., Filimonov, S. V., Malakho, A. P., & Avdeev, V. V. (2017). Cu-Expanded Graphite Composite Material Preparation and Thermal Properties. Eurasian Chemico-Technological Journal, 19(3), 273–277. https://doi.org/10.18321/ectj671

Issue

Section

Articles

Most read articles by the same author(s)