Potential of Jerusalem Artichoke Stem for Cellulose Production
DOI:
https://doi.org/10.18321/ectj828Keywords:
Jerusalem artichoke (Helianthus tuberosus L.), сellulose, сhemical properties, сhemical processing, biofuelAbstract
There is a potential opportunity to convert almost any type of biomass into biofuel and bio- nanomaterials, if the appropriate biotechnological and chemical processing methods are used. The preference for this or that bioresource is due to the stability of the raw material base and the prospect of its use. Jerusalem artichoke stem (Helianthus tuberosus L.) (JA) is widely known as a potential non-food raw material for biofuels due to high biomass extraction (36–49 t/ha (tons per hectare)) and limited cultivation requirements. But little attention is given to study the possibility of using the stems to produce various kinds of cellulose. This article presents samples of cellulose that were obtained from the Jerusalem artichoke stem using mechanical and chemical methods. Cellulose yield from the stem was: cortex 51.1%, pith 65.2% with the α-cellulose content 96–98%. Methods of electron microscopy, atomic absorption, IR spectroscopy, X-ray diffraction, BET for nitrogen adsorption, thermogravimetry were used to study the cortex and the pith of the Jerusalem artichoke stem. Analysis of the cellulose samples confirmed the possibility of obtaining high-quality cellulose.
References
(1). S. Wang, J. Chen, G. Yang, K. Chen, R. Yang, J. Zeng, BioResources 12 (2017) 1031–1040. Crossref
(2). R. Maurya, C. Paliwal, T. Ghosh, I. Pancha, K. Chokshi, M. Mitra, A. Ghosh, S. Mishra, Bioresource Technol. 214 (2016) 787–796. Crossref
(3). A. Jain, R. Balasubramanian, M.P. Srinivasan, Chem. Eng. J. 283 (2016) 789–805. Crossref
(4). M. Sevilla, A. Fuertes, R. Mokaya, Energy Environ. Sci. 4 (2011) 1400–1410. Crossref
(5). C. Sanchez, L. Rozes, F. Ribot, C. Laberty- Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, CR Chim. 13 (2010) 3–39. Crossref
(6). J. Shen, Z. Song, X. Qian, Y. Ni, Ind. Eng. Chem. Res. 50 (2011) 661–666. Crossref
(7). R. Travaini, J. Martín-Juárez, A. Lorenzo- Hernando, S. Bolado-Rodríguez, Bioresource Technol. 199 (2016) 2–12. Crossref
(8). M.A. Mehmood, G.Ye, H. Luo, C. Liu, S. Malik, I. Afzal, J. Xu, M.S. Ahmad, Bioresource Technol. 228 (2017) 18–24. Crossref
(9). W. Li, J. Zhang, C. Yu, Q. Li, Dong, F. G. Wang, G.D. Gu, Z.Y. Guo, Carbohyd. Polym. 121 (2015) 315–319. Crossref
(10). X.H. Long, H.B. Shao, L. Liu, L.P. Liu, Z.P. Liu, Renew. Sust. Energ. Rev. 54 (2016) 1382–1388. Crossref
(11). J. Matías, J.M. Encinar, J. González, J.F. González, Energy Sustain. Dev. 25 (2015) 34– 39. Crossref
(12). V. Fiore, A. Valenza, G. Di Bella, Compos. Sci. Technol. 71 (2011) 1138–1144. Crossref
(13). T211 om-2. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. Approved by the Standard Specific Interest Group for this Test Method TAPPI.
(14). F. Xu, Y.C. Shi, D. Wang, Carbohyd. Polym. 94 (2013) 904–917. Crossref
(15). W. Zhang, Z.L. Yi, J.F. Huang, F.C. Li, B. Hao, M. Li, S.F. Hong, Y.Z. Lv, W. Sun, A. Ragauskas, F. Hu, J.H. Peng, L.C. Peng, Bioresource Technol. 130 (2013) 30–37. Crossref
(16). USP, 2002. 25/NF 20 (United States Pharmacopeia 25/National Formulary 20). 2010. 456 Washington, DC, p. 701.
(17). T.V Prokopov, N.D. Delchev, D.S. Taneva, Journal of Food and Packaging Science, Technique and Technologies. 3 (2014) 64–68.
(18). M. Li, J. Wang, Y. Yang, G. Xie, Bioresource Technol. 208 (2016) 31–41. Crossref
(19). L. Zhou, J. Pang, A. Wang, T. Zhang, 2013. Chinese J. Catal. 34 (2013) 2041–2046. Crossref
(20). M. Ioelovich, E. Morag, BioRes. 6 (2011) 2818–2835.
(21). M. Ioelovich, BioRes. 3 (2008) 1403-1418.
(22). H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel 86 (2007) 1781–1788. Crossref
(23). W. Liu, K. Mohanty, L.T. Drzal, P. Askel, M. Misra, J. Mater. Sci. 39 (2004) 1051–1054. Crossref
(24). L. Zhu, H. Qi, M. Lv, Y. Kong, Y. Yu, X. Xu, Bioresource Technol. 124 (2012) 455–459. Crossref
(25). I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli, F. Sarasini, Compos. Sci. Technol. 70 (2010) 116– 122. Crossref
(26). C. Li, J. Lin, G. Zhao, J. Zhang, BioResources 11 (2016) 1596–1608. Crossref
(27). A. Alawar, A.M. Hamed, K. Al-Kaabi, Compos. Part B-Eng. 40 (2009) 601–606. Crossref
(28). M. Poletto, H.L.O. Júnior, A.J. Zattera, Materials 7 (2014) 6105–6119. Crossref
(29). A. Mabuda, N. Mamphweli, E. Meyer, Renew. Sust. Energ. Rev. 53 (2016) 1656–1664. Crossref
(30). J. Hoekstra, A.M. Beale, F. Soulimani, M. Versluijs-Helder, Dirk van de Kleut, J.M. Koelewijn, J.W. Geus, L.W. Jenneskens, Carbon 107 (2016) 248–260. Crossref
(31). M. Sevilla, A.B. Fuertes, Energy Environ. Sci. 4 (2011) 1765–1771. Crossref
(32). F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu, Polym. Degrad. Stabil. 93 (2008) 90–98. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.