Importance of Carbon Porosity for Energy-Related Applications
DOI:
https://doi.org/10.18321/ectj859Abstract
Nanoporous carbons have many advantages over other adsorbents. This includes their high surface area, pore volume and also conductivity of a carbon matrix. The latter is very important for electrocatalysis. In recent years carbon materials have gained a lot of attention as metal-free catalysts. Their catalytic centers have been linked mainly to nitrogen and sulfur heteroatoms incorporated to the carbon matrix. So far, the research efforts have focused mainly on nanoforms of carbons such a graphene and CNT. Inspired by those results, we have performed CO2 and O2 electroreduction on nanoporous carbons assuming that small pores, similar in sizes to target molecules, can enhance the efficiency of these catalytic processes. Indeed, the results suggested that even though the N- and S- based catalytic centers are important, adsorption of O2 or CO2/CO2-/CO/H2 in pores has a positive effect on these overall reduction processes. This minireview summarizes our recent results on the role of porosity in electrocatalysis on porous carbons.
References
(1). Von Ostrejko, R. British patent 14, 224, 1900.
(2). Von Ostreyko, R. German patent 136, 792, 1901.
(3). Von Ostrejko, R. US patent 739, 104, 1903.
(4). P. Lodewyckx, Chapter 10, Adsorption of chemical warfare agents. Part of volume: Activated Carbon Surfaces in Environmental Remediation (Ed. Teresa J. Bandosz), Interface Science and Technology 7 (2006) 475–528.
(5). M. Zhong, E.K. Kim, J.P. McGann, S.E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 134 (2012) 14846–14857.
(6). T. Chen, L. Dai, Mater. Today 16 (2013) 272– 280.
(7). Y. Jiao,Y. Zheng, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 136 (2014) 4394–4403.
(8). X. Liu, L. Dai, Nature Reviews Materials 1 (2016) 16064.
(9). T.J. Bandosz, C.O Ania, Chapter 4, Surface chemistry of activated carbons and its characterization. Part of volume: Activated Carbon Surfaces in Environmental Remediation (Ed. Teresa J. Bandosz) Interface Science and Technology 7 (2006) 159–229.
(10). J. Chmiola, L. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313 (2006) 1760– 1763.
(11). M. Barczak, Y. Elsayed, J. Jagiello, T.J. Bandosz, Electrochim. Acta 275 (2018) 236–247.
(12). T.J. Bandosz, Chem. Rec. 16 (2015) 205–218.
(13). W. Li. M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, ChemSusChem 9 (2016) 606–616.
(14). W. Li, B. Herkt, M. Seredych, T.J. Bandosz. Appl. Catal. B-Environ. 207 (2017) 195–206. Crossref
(15). W. Li, N. Fechler, T.J. Bandosz, Appl. Catal. B-Environ. 234 (2018) 1–9. Crossref
(16). W. Li, T.J. Bandosz, ChemSusChem 11 (2018) 2987–2999. Crossref
(17). J. Encalada, K. Savaram, N.A. Travlou, W. Li, Q. Li, C. Delgado-Sánchez, V. Fierro, A. Celzard, H. He, T.J. Bandosz, ACS Catal. 7 (2017) 7466– 7478. Crossref
(18). M. Seredych, A. Szczurek, V. Fierro, A. Celzard, T.J. Bandosz, ACS Catal. 6 (2016) 5618–5628. Crossref
(19). P.P. Sharma, J. Wu, R.M. Yadav, M. Liu, C.J. Wright, C.S. Tiwary, B.I. Yakobson, J. Lou, P.M. Alayan, X.S. Zhou, Angew. Chem. Int. Edit. 54 (2015) 13701–13705. Crossref
(20). J. Guo, J.R. Morris, J.Y. Ihm, C.I. Contescu, N.C. Gallego, G. Duscher, S.J. Pennycook, M.F. Chisholm, Small 8 (2012) 3283–3288. Crossref
(21). D. Hines, A. Bagreev, T.J. Bandosz, Langmuir 20 (2004) 3388–3397. Crossref
(22). J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Edit. 51 (2012) 1–6. Crossref
(23). Y.-L. Liu, C.-X. Shi, X.-Y. Xu, P.-C. Sun, T.- H. Chen, J. Power Sources 283 (2015) 389–396. Crossref
(24). Y. He, X. Han, Y. Du, B. Song, P. Xu, B. Zhang. ACS Appl. Mater. Interfaces 6 (2016) 3601– 3608. Crossref
(25). G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titritici, J. Mater. Chem. A. 4 (2016) 2581–2589. Crossref
(26). M. Kim, H.S. Kim, S.J. Yoo, W.C. Yoo, Y.E. Sung. J. Mater. Chem. A. 5 (2017) 4199–4206. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.