Biomass Pyrolysis and Gasification Comprehensive Modeling for Effective Power Generation at Combined Cycle Power Plant
DOI:
https://doi.org/10.18321/ectj669Keywords:
pyrolysis, gasification, biomass, Aspen Plus simulationAbstract
Thermogravimetric experiments were carried out for a few types of wood with determination of the kinetic parameters characterizing the pyrolysis process. In the present work the various kinetic models used for this purpose are suggested. Analyzing software tool for calculation of thermal conversion products and reactor balance is developed. The optimal temperature range for biomass pyrolysis is identified using this tool. The influence of steam and air flow rates on the gasification products is represented. The impact of operating parameters on the synthesis gas composition was evaluated. Comparison of the computational model and the results obtained during experimental studies on the existing gasifier were carried out. The combined cycle power plant involving the biomass gasification process has been numerically simulated in the Aspen Plus. Calculations of the optimal operating parameters of different thermal process components and of the entire combined cycle power plant system were performed.
References
[2]. M. Pappas, J. Moradi. Proceedings of the American society of mechanical engineers: Ser. V. Design and engineering technology 4 (1975) 158–165.
[3]. A.G. Barneto, J.A. Carmona, J.M. Alfonso and J.C. Ferrer, Ind. Eng. Chem. 48 (2009) 7430‒7436. <a href="http://doi.org/10.1021/ie900453w">Crossref</a>
[4]. A.V. Fedyukhin, I.L. Maikov, V.A. Sinelshchikov. Book of Abstracts of International Conference on Interaction of Intense Energy Fluxes with Matter. Nalchik. Russia (2011) 114–115.
[5]. A.M. Gyul’maliev, I.A. Sultanguzin, A.V. Fedyukhin, Solid Fuel Chem. 46 (2012) 164‒167. <a href="http://doi.org/10.3103/S0361521912030056">Crossref</a>
[6]. Yu.V. Konovalova, V.N. Trifanov, A.M. Gyul’maliev, S.G. Gagarin, I.A. Sultanguzin, Solid Fuel Chem. 38 (2004) 13‒16.
[7]. A.M. Gyul’maliev, I.A. Sultanguzin, A.V. Fedyukhin, T.A. Stepanova, Solid Fuel Chem. 48 (2014) 164‒169. <a href="http://doi.org/10.3103/ S0361521914030057">Crossref</a>
[8]. Th. Damartzis, S. Michailos, A. Zabaniotou, Fuel Process. Technol. 95 (2012) 37‒44. <a href="http://doi.org/10.1016/j.fuproc.2011.11.010">Crossref</a>
[9]. J. François, L. Abdelouahed, G. Mauviel, M. Feidt, C. Rogaume, O. Mirgaux, F. Patisson, A. Dufour, Chem. Eng. Trans. 29 (2012) 769–774. <a href="http://doi.org/10.3303/CET1229129">Crossref</a>
[10]. I.A. Sultanguzin, A.V. Fedyukhin, S.Yu. Kurzanov, A.M. Gyulmaliev, T.A. Stepanova, V.A. Tumanovsky, D.P. Titov, Thermal Engineering 62 (2015) 359–364. <a href="http://doi.org/10.1134/S0040601515050110">Crossref</a>
[11]. A.V. Fedyukhin, I.A. Sultanguzin, T.A. Stepanova, E.V. Voloshenko, S.Yu. Kurzanov, M.V. Isaev, Coke and Chemistry 56 (2013) 302– 306. <a href="http://doi.org/10.3103/S1068364X13080024">Crossref</a>
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.