Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors

Authors

  • P. J.F. Harris Electron Microscopy Laboratory, Department of Chemistry, J.J. Thomson Building, University of Reading, Whiteknights, Reading RG6 6AF, UK

DOI:

https://doi.org/10.18321/ectj863

Keywords:

fullerenes, non-graphitizing carbon, microporous carbon, electron microscopy

Abstract

Non-graphitizing carbon, or char, has been intensively studied for decades, but there is still no agreement about its detailed atomic structure. The discovery of the fullerenes, and of related structures such as nanotubes, stimulated the present author and others to put forward models which incorporate non-hexagonal rings into hexagonally-bonded sp2 carbon networks, creating a microporous structure made up of highly curved fragments. However, this model has not been universally accepted. This paper reviews the models that have been put forward for non-graphitizing carbon and outlines the evidence for a fullerene-like structure. The influence of precursor chemistry on the final structure of the carbon is also discussed.

References

(1). R.E. Franklin, Proc. Roy. Soc. A 209 (1951) 196‒218. Crossref DOI: https://doi.org/10.1098/rspa.1951.0197

(2). P.J.F. Harris, Interdiscipl. Sci. Rev. 26 (2001) 204‒210. Crossref DOI: https://doi.org/10.1179/030801801679467

(3). P.J.F. Harris, S.C. Tsang, Philos. Mag. A 76 (1997) 667‒677. Crossref DOI: https://doi.org/10.1080/01418619708214028

(4). P.J.F. Harris, Interdiscipl. Sci. Rev. 42 (1997) 206‒218. Crossref DOI: https://doi.org/10.1179/095066097790093172

(5). P.J.F. Harris, A. Burian, S. Duber, Phil. Mag. Lett. 80 (2000) 381‒386. Crossref DOI: https://doi.org/10.1080/095008300403512

(6). P.J.F. Harris, Chemistry and Physics of Carbon, Vol. 28 (2003) 1‒39. Ed. Ljubisa R. Radovic. Chapter One: Impact of the Discovery of Fullerenes on Carbon Science.

(7). P.J.F. Harris, Crit. Rev. Solid State 30 (2005) 235‒253. Crossref DOI: https://doi.org/10.1080/10408430500406265

(8). P.J.F. Harris, J. Materials Science 48 (2013) 565‒577. Crossref DOI: https://doi.org/10.1007/s10853-012-6788-1

(9). L.L. Ban, D. Crawford, H. Marsh, J. Appl. Cryst. 8 (1975) 415‒420. Crossref DOI: https://doi.org/10.1107/S0021889875010904

(10). G.M. Jenkins, K. Kawamura, Nature 231 (1971) 175‒176. Crossref DOI: https://doi.org/10.1038/231175a0

(11). P.R. Buseck, B.J. Huang, L.P. Keller, Energy and Fuels 1 (1987) 105–110. Crossref DOI: https://doi.org/10.1021/ef00001a020

(12). H. Murayama, T. Maeda, Nature 345 (1990) 791– 793. Crossref DOI: https://doi.org/10.1038/345791a0

(13). Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Phys. Rev. Lett. 102 (2009) 15501. Crossref DOI: https://doi.org/10.1103/PhysRevLett.102.015501

(14). A. Oberlin, Carbon 22 (1984) 521–541. Crossref DOI: https://doi.org/10.1016/0008-6223(84)90086-1

(15). A. Oberlin, Chemistry and Physics of Carbon 22 (1989) 1-143.

(16). A. Oberlin, S. Bonnamy, P.G. Rouxhet, Chemistry and Physics of Carbon 26 (1999) 1-148.

(17). A. Oberlin, S. Bonnamy, Chemistry and Physics of Carbon 31 (2012) 1-83. DOI: https://doi.org/10.1201/b12960-2

(18). H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162–163. Crossref DOI: https://doi.org/10.1038/318162a0

(19). W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347 (1990) 354–358. Crossref DOI: https://doi.org/10.1038/347354a0

(20). S. Iijima, Nature 354 (1991) 56–58. DOI: https://doi.org/10.1038/354056a0

(21). J.P. Abrahamson, A. Jain, A.C.T. van Duin, R.L. Vander Wal, C 4 (2018) 36. Crossref DOI: https://doi.org/10.3390/c4020036

(22). X. Ke, C. Bittencourt, G. Van Tendeloo, Beilstein J. Nanotechnol. 6 (2015) 1541–1557. Crossref DOI: https://doi.org/10.3762/bjnano.6.158

(23). P.J.F. Harris, C 4 (2018) 4. Crossref DOI: https://doi.org/10.3390/c4010004

(24). P.J.F. Harris, Z. Liu, K. Suenaga, J. Phys.: Condens. Matter 20 (2008) 362201. Crossref DOI: https://doi.org/10.1088/0953-8984/20/36/362201

(25). J. Guo, J.R. Morris, Y. Ihm, C.I. Contescu, N.C. Gallego, G. Duscher, S.J. Pennycook, M.F. Chisholm, Small 8 (2012) 3283–3288. Crossref DOI: https://doi.org/10.1002/smll.201200894

(26). Z. Zhang, R. Brydson, Z. Aslam, S. Reddy, A. Brown, A. Westwood, B. Rand, Carbon 49 (2011) 5049–5063. Crossref DOI: https://doi.org/10.1016/j.carbon.2011.07.023

(27). A. Burian, J.C. Dore, Acta Phys. Pol. A 98 (2000) 457–468. Crossref DOI: https://doi.org/10.12693/APhysPolA.98.457

(28). A. Burian, P. Daniel, S. Duber, J.C. Dore, Philos. Mag. B 81 (2001) 525‒540. Crossref DOI: https://doi.org/10.1080/13642810108225448

(29). N. Woźnica, Ł. Hawełek, S. Duber, H.E. Fischer, V. Honkimäki, M. Pawlyta, A. Bulou, A. Burian, Philos. Mag. 97 (2017) 1675‒1697. Crossref DOI: https://doi.org/10.1080/14786435.2017.1313465

(30). M.W. Smith, I. Dallmeyer, T.J. Johnson, C.S. Brauer, J.-S. McEwen, J.F. Espinal, M. Garcia- Perez, Carbon 100 (2016) 678‒692. Crossref DOI: https://doi.org/10.1016/j.carbon.2016.01.031

(31). A.C. Forse, C. Merlet, P.K. Allan, E.K. Humphreys, J.M. Griffin, M. Aslan, M. Zeiger, V. Presser, Y. Gogotsi, C.P. Grey, Chem. Mater. 27 (2015) 6848‒6857. Crossref DOI: https://doi.org/10.1021/acs.chemmater.5b03216

(32). R.C. Powles, N.A. Marks, D.W.M. Lau, Phys. Rev. B 79 (2009) 075430. Crossref DOI: https://doi.org/10.1103/PhysRevB.79.075430

(33). A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, J. Włoch, P. Kowalczyk, J. Phys.-Condens. Mat. 19 (2007) 406208. Crossref DOI: https://doi.org/10.1088/0953-8984/19/40/406208

(34). A.P. Terzyk, S. Furmaniak, P.J.F. Harris, P.A. Gauden, J. Włoch, P. Kowalczyk, G. Rychlicki, Phys. Chem. Chem. Phys. 9 (2007) 5919‒5927. Crossref DOI: https://doi.org/10.1039/b710552e

(35). S. Furmaniak, A.P Terzyk, P.A. Gauden, P.J.F. Harris, P. Kowalczyk, J. Phys.-Condens. Mat. 21 (2009) 315005. Crossref DOI: https://doi.org/10.1088/0953-8984/21/31/315005

(36). S. Furmaniak, P. Kowalczyk, A.P. Terzyk, P.A. Gauden, P.J.F. Harris, J. Colloid Interf. Sci. 397 (2013) 144‒153. Crossref DOI: https://doi.org/10.1016/j.jcis.2013.01.044

(37). J.J. Kipling, J.N. Sherwood, P.V. Shooter, N.R. Thompson, Carbon 1 (1964) 315‒318. Crossref DOI: https://doi.org/10.1016/0008-6223(64)90285-4

(38). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Energ. Fuel. 30 (2016) 7811‒7826. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.6b00917

(39). K.H. Homann, Angew. Chem. Int. Edit. 37 (1998) 2435‒2451. Crossref DOI: https://doi.org/10.1002/(SICI)1521-3773(19981002)37:18<2434::AID-ANIE2434>3.0.CO;2-L

(40). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Carbon 59 (2013) 383‒405. Crossref DOI: https://doi.org/10.1016/j.carbon.2013.03.033

(41). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Philos. Mag. 95 (2015) 4054‒4077. Crossref DOI: https://doi.org/10.1080/14786435.2015.1108525

(42). C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10 (2010) 1144‒1148. Crossref DOI: https://doi.org/10.1021/nl9031617

(43). S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, ACS Nano 10 (2016) 7515‒7522. Crossref DOI: https://doi.org/10.1021/acsnano.6b02391

(44). F. Vallejos-Burgos, N. Díaz-Pérez, A. Silva- Villalobos, R. Jiménez, X. García, L.R. Radovic, Carbon 109 (2016) 253‒263. Crossref DOI: https://doi.org/10.1016/j.carbon.2016.08.012

(45). A. Nieto-Marquez, I. Espartero, J.C. Lazo, A. Romero, J.L. Valverde, Chem. Eng. J. 153 (2009) 211‒216. Crossref DOI: https://doi.org/10.1016/j.cej.2009.06.010

(46). J.P. Abrahamson, R. L. Vander Wal, C 4 (2018) 33. Crossref DOI: https://doi.org/10.3390/c4020027

Downloads

Published

30-09-2019

How to Cite

Harris, P. J. (2019). Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors. Eurasian Chemico-Technological Journal, 21(3), 227–234. https://doi.org/10.18321/ectj863

Issue

Section

Articles