The Study of Water Sorption with Hydrolysis Lignin by Solid-State NMR Spectroscopy
DOI:
https://doi.org/10.18321/ectj889Keywords:
hydrolysis lignin, water sorption, nuclear magnetic resonanceAbstract
Hydrolysis lignin is formed as a by-product of cellulose production and has limited industrial application. The ability of hydrolysis lignin to absorb and retain some water is important aspect for the study of its properties and modification methods. The processes of water sorption by hydrolysis lignin were studied with solid-state NMR spectroscopy. The samples were humidified in desiccators containing different saturated salts solutions with different relative air humidity above them. The sorption capacity of the samples was determined by water sorbed from the air, and it was found that lignin absorbs the amount of water equal to 40% of sample weight at maximum relative humidity of the air. The cross-polarization (CP) and magic angle spinning (MAS) methods were used to register solid-state NMR spectra. Using the 1H-NMR spectra, it was found that the hydrolysis lignin is hydrated in the whole volume, and the water penetrates into the deep layers of polymer, however, the distribution of water at the likely sorption sites is uneven. It was obtained with use of 13C-NMR spectroscopy that hydrolysis lignin hydrates in both hydrophilic and hydrophobic regions of the macromolecule, and the bulk of sorbed water (~64%) concentrates around the hydroxyl and methoxyl groups of lignin and polysaccharide residues.
References
(1). C. Heitner, D.R. Dimmel, J.A. Schmidt. Lignin and lignans: advances in chemistry (Ed. by C. Heitner). Boca Raton: CRC Press, 2010. 683 p.
(2). K.G. Bogolitsyn, V.V. Lunin, D.S. Kosyakov, A.P. Karmanov, T.E. Skrebets, N.R. Popova, A.V. Malkov, N.S. Gorbova, A.N. Pryahin, A.N. Shkaev. Fizicheskaya khimiya lignina [Physical chemistry of lignin]. Ed. by K.G. Bogolitsyn, V.V. Lunin. Arkhangelsk: Arkhangelsk State Technical University, 2009. 489 p. (in Russian).
(3). M. Balakshin, E. Capanema, J. Wood Chem. Technol. 35 (2015) 220–237. Crossref
(4). I.F. Fiţigău, F. Peter, C.G. Boeriu, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 7 (2013) 167–172.
(5). L.V. Kanitskaya, A.F. Gorotov, D.T.T. Khai, A.V. Rokhin, Russ. J. Bioorg. Chem. 38 (2012) 720–725. Crossref
(6). Y. Pu, S. Cao, A.J. Ragauskas, Energy Environ. Sci. 4 (2011) 3154–3166. Crossref
(7). S.L. Shestakov, D.S. Kosiakov, A.Yu. Kozhevnikov, N.V. Ul’ianovskii, Yu.A. Popova, Chemistry of plant raw material [Khimija Rastitel’nogo Syr’ja] 2. (2017) 81–88 (in Russian). Crossref
(8). N. Terashima, J. Hafrén, U. Westermark, D.L. VanderHart, Holzforschung 56 (2002) 43–50. Crossref
(9). L. Fu, S.A. McCallum, J. Miao, C. Hart, G.J. Tudryn, F. Zhang, R.J. Linhardt, Fuel 141 (2015) 39–45. Crossref
(10). M.J. Duer, Solid-State NMR Spectroscopy Principles and Applications, 2002, Blackwell Science Ltd. Crossref
(11). G.L. Brown, Water in polymers, Chapter 26, 441–450. ACS Symposium Series 127 (1980). Crossref
(12). V.I. Volkov, E.A. Sidorenkova, S.F. Timashev, S.G. Lakeev, Zhurnal fizicheskoi khimii [Russian Journal of Physical Chemistry A] 67 (1993) 1014–1018 (in Russian).
(13). V.I. Volkov, A.I. Rebrov, E.A. Sanginov, E.M. Anokhin, S.L. Shestakov, A.A. Pavlov, A.V. Maksimychev, Yu.A. Dobrovolskii, Russ. J. Electrochem. 45 (2009) 374‒381. Crossref
(14). G. Ye, N. Janzen, G.R. Goward, Macromolecules 39 (2006) 3283–3290. Crossref
(15). M. Takasaki, K. Kimura, K. Kawaguchi, A. Abe, G. Katagiri, Macromolecules 38 (2005) 6031–6037. Crossref
(16). S. Tsushima, K. Teranishi, S. Hirai, Energy 30 (2005) 235–245. Crossref
(17). S. Kang, C.J. Zhang, G.Y. Xiao, D. Yan, G. Sun, J. Membr. Sci. 334 (2009) 91–100. Crossref
(18). J.W. Traer, J.F. Britten, G.R. Goward, J. Phys. Chem. B. 111 (2007) 5602–5609. Crossref
(19). D.S. Kosyakov, E.V. Ipatova, S.M. Krutov, N.V. Ul’yanovskii, I.I. Pikovskoi, J. Anal. Chem. 72 (2017) 1396–1403. Crossref
(20). S.L. Shestakov, A.A. Pavlov, A.V. Maksimychev, A.V. Chernyak, V.I. Volkov, S.V. Timofeev, Russ. J. Phys. Chem. B [Original: Khimicheskaya Fizika 29 (2010) 60–68] 4 (2010) 1005–1013. Crossref
(21). E.G. Hugo, V. Kotlyar, A. Nudelman, J. Org. Chem. 62 (1997) 7512–7515. Crossref
(22). Blümich B. Essential NMR. For scientists and engineers. – M.: Technosphera, 2011. 256 p. (in Russian).
(23). E. Pretsch, P. Bühlmann, C. Affolter. Structure Determination of Organic Compounds. Berlin: Springer-Verlag, 2000. 436 p. DOI: 10.1007/978-3-662-04201-4
(24). S. Lequin, D. Chassagne, T. Karbowiak, R. Gougeon, L. Brachais, J.-P. Bellat, J. Agric. Food Chem. 58 (2010) 3438–3445. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.