The Study of Water Sorption with Hydrolysis Lignin by Solid-State NMR Spectroscopy
DOI:
https://doi.org/10.18321/ectj889Keywords:
hydrolysis lignin, water sorption, nuclear magnetic resonanceAbstract
Hydrolysis lignin is formed as a by-product of cellulose production and has limited industrial application. The ability of hydrolysis lignin to absorb and retain some water is important aspect for the study of its properties and modification methods. The processes of water sorption by hydrolysis lignin were studied with solid-state NMR spectroscopy. The samples were humidified in desiccators containing different saturated salts solutions with different relative air humidity above them. The sorption capacity of the samples was determined by water sorbed from the air, and it was found that lignin absorbs the amount of water equal to 40% of sample weight at maximum relative humidity of the air. The cross-polarization (CP) and magic angle spinning (MAS) methods were used to register solid-state NMR spectra. Using the 1H-NMR spectra, it was found that the hydrolysis lignin is hydrated in the whole volume, and the water penetrates into the deep layers of polymer, however, the distribution of water at the likely sorption sites is uneven. It was obtained with use of 13C-NMR spectroscopy that hydrolysis lignin hydrates in both hydrophilic and hydrophobic regions of the macromolecule, and the bulk of sorbed water (~64%) concentrates around the hydroxyl and methoxyl groups of lignin and polysaccharide residues.
References
(1). C. Heitner, D.R. Dimmel, J.A. Schmidt. Lignin and lignans: advances in chemistry (Ed. by C. Heitner). Boca Raton: CRC Press, 2010. 683 p.
(2). K.G. Bogolitsyn, V.V. Lunin, D.S. Kosyakov, A.P. Karmanov, T.E. Skrebets, N.R. Popova, A.V. Malkov, N.S. Gorbova, A.N. Pryahin, A.N. Shkaev. Fizicheskaya khimiya lignina [Physical chemistry of lignin]. Ed. by K.G. Bogolitsyn, V.V. Lunin. Arkhangelsk: Arkhangelsk State Technical University, 2009. 489 p. (in Russian).
(3). M. Balakshin, E. Capanema, J. Wood Chem. Technol. 35 (2015) 220–237. Crossref DOI: https://doi.org/10.1080/02773813.2014.928328
(4). I.F. Fiţigău, F. Peter, C.G. Boeriu, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 7 (2013) 167–172.
(5). L.V. Kanitskaya, A.F. Gorotov, D.T.T. Khai, A.V. Rokhin, Russ. J. Bioorg. Chem. 38 (2012) 720–725. Crossref DOI: https://doi.org/10.1134/S1068162012070102
(6). Y. Pu, S. Cao, A.J. Ragauskas, Energy Environ. Sci. 4 (2011) 3154–3166. Crossref DOI: https://doi.org/10.1039/c1ee01201k
(7). S.L. Shestakov, D.S. Kosiakov, A.Yu. Kozhevnikov, N.V. Ul’ianovskii, Yu.A. Popova, Chemistry of plant raw material [Khimija Rastitel’nogo Syr’ja] 2. (2017) 81–88 (in Russian). Crossref DOI: https://doi.org/10.14258/jcprm.2017021641
(8). N. Terashima, J. Hafrén, U. Westermark, D.L. VanderHart, Holzforschung 56 (2002) 43–50. Crossref DOI: https://doi.org/10.1515/HF.2002.008
(9). L. Fu, S.A. McCallum, J. Miao, C. Hart, G.J. Tudryn, F. Zhang, R.J. Linhardt, Fuel 141 (2015) 39–45. Crossref DOI: https://doi.org/10.1016/j.fuel.2014.10.039
(10). M.J. Duer, Solid-State NMR Spectroscopy Principles and Applications, 2002, Blackwell Science Ltd. Crossref DOI: https://doi.org/10.1002/9780470999394
(11). G.L. Brown, Water in polymers, Chapter 26, 441–450. ACS Symposium Series 127 (1980). Crossref DOI: https://doi.org/10.1021/bk-1980-0127.ch026
(12). V.I. Volkov, E.A. Sidorenkova, S.F. Timashev, S.G. Lakeev, Zhurnal fizicheskoi khimii [Russian Journal of Physical Chemistry A] 67 (1993) 1014–1018 (in Russian).
(13). V.I. Volkov, A.I. Rebrov, E.A. Sanginov, E.M. Anokhin, S.L. Shestakov, A.A. Pavlov, A.V. Maksimychev, Yu.A. Dobrovolskii, Russ. J. Electrochem. 45 (2009) 374‒381. Crossref DOI: https://doi.org/10.1134/S102319350904003X
(14). G. Ye, N. Janzen, G.R. Goward, Macromolecules 39 (2006) 3283–3290. Crossref DOI: https://doi.org/10.1021/ma0523825
(15). M. Takasaki, K. Kimura, K. Kawaguchi, A. Abe, G. Katagiri, Macromolecules 38 (2005) 6031–6037. Crossref DOI: https://doi.org/10.1021/ma047970h
(16). S. Tsushima, K. Teranishi, S. Hirai, Energy 30 (2005) 235–245. Crossref DOI: https://doi.org/10.1016/j.energy.2004.04.013
(17). S. Kang, C.J. Zhang, G.Y. Xiao, D. Yan, G. Sun, J. Membr. Sci. 334 (2009) 91–100. Crossref DOI: https://doi.org/10.1016/j.memsci.2009.02.021
(18). J.W. Traer, J.F. Britten, G.R. Goward, J. Phys. Chem. B. 111 (2007) 5602–5609. Crossref DOI: https://doi.org/10.1021/jp071471b
(19). D.S. Kosyakov, E.V. Ipatova, S.M. Krutov, N.V. Ul’yanovskii, I.I. Pikovskoi, J. Anal. Chem. 72 (2017) 1396–1403. Crossref DOI: https://doi.org/10.1134/S1061934817140064
(20). S.L. Shestakov, A.A. Pavlov, A.V. Maksimychev, A.V. Chernyak, V.I. Volkov, S.V. Timofeev, Russ. J. Phys. Chem. B [Original: Khimicheskaya Fizika 29 (2010) 60–68] 4 (2010) 1005–1013. Crossref DOI: https://doi.org/10.1134/S1990793110060199
(21). E.G. Hugo, V. Kotlyar, A. Nudelman, J. Org. Chem. 62 (1997) 7512–7515. Crossref DOI: https://doi.org/10.1021/jo971176v
(22). Blümich B. Essential NMR. For scientists and engineers. – M.: Technosphera, 2011. 256 p. (in Russian).
(23). E. Pretsch, P. Bühlmann, C. Affolter. Structure Determination of Organic Compounds. Berlin: Springer-Verlag, 2000. 436 p. DOI: 10.1007/978-3-662-04201-4 DOI: https://doi.org/10.1007/978-3-662-04201-4
(24). S. Lequin, D. Chassagne, T. Karbowiak, R. Gougeon, L. Brachais, J.-P. Bellat, J. Agric. Food Chem. 58 (2010) 3438–3445. Crossref DOI: https://doi.org/10.1021/jf9039364