d0-Ferromagnetism in SHS Titanium Nitride Treated by Ball Milling
DOI:
https://doi.org/10.18321/ectj892Keywords:
self-propagating high-temperature synthesis, titanium nitride, powder, d0-ferromagnetism, mechanical treatmentAbstract
In this work, the influence of mechanical treatment (mechanical milling) of the TiN titanium nitride powder produced by self-propagating high-temperature synthesis on the magnetic properties of the milled powders is investigated. The effect of d0-magnetization was observed. The TiN powders were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, specific surface area measurement, and chemical analysis. The results show that the mechanical treatment of the TiN titanium nitride powder influences the magnetization in a nonmonotonic manner. The conditions of mechanical treatment corresponding to the best value of specific magnetization of milled powders were established. The specific magnetization depended on three measured parameters: specific surface area, coherent scattering region, and average particle size. It was shown that unit cell parameters of milled TiN titanium nitride powders have not been changed with the increasing of duration milling time. The calculated values of CSR of mechanically treated powders decreased with the increasing of duration of milling time. The values of macrostrains were negative. Mechanical treatment of the TiN titanium nitride powders has led to a change in the nitrogen content from 21.4 to 20.0 wt.%. Stoichiometry of the TiN titanium nitride varied from TiN0.903-TiN0.886; therefore, the observed d0-magnetization effect is associated with a defective surface structure of mechanically treated powders.
References
(1). A. Droghetti, C.D. Pemmaraju, S. Sanvito, Phys. Rev. B 78 (2008) 140404. Crossref
(2). H. Ohno, Science 281 (1998) 951‒956. Crossref
(3). J.M.D. Coey, Solid State Sci. 7 (2005) 660‒667. Crossref
(4). P. Satyarthi, S. Ghosh, P. Mishra, B.R. Sekhar, F. Singh, P. Kumar, D. Kanjilal, R.S. Dhaka, P. Srivastava, J. Magn. Magn. Mater. 385 (2015) 318‒325. Crossref
(5). Shipra, A. Gomathi, A. Sundaresan, C.N.R. Rao, Solid State Commun. 142 (2007) 685‒688. Crossref
(6). C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan, C. Zhang, L. Yu, Z. Zhang, J. Mater. Chem. 21 (2011) 15273‒15278. Crossref
(7). A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman & Hall, London, 1997, p. 696. Crossref
(8). P. Patsalas, S. Logothetidis, J. Appl. Phys. 90 (2001) 4725‒4734. Crossref
(9). U. Guler, S. Suslov, V. Kildishev, A. Boltasseva, M. Shalaev, Nanophotonics 4 (2015) 269‒276. Crossref
(10). B. Bora, N. Aomoa, M. Kakati, H. Bhuyan, Powder Technol. 246 (2013) 413‒418. Crossref
(11). X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Nano Lett. 12 (2012) 5376‒5381. Crossref
(12). A. Wieckowski, E.R. Savinova, C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces, Marcell Dekker, New York, 2003, 970 p. Crossref
(13). B. Avasarala, T. Murray, W. Li, P. Haldar, J. Mater. Chem. 19 (2009) 1803‒1805. Crossref
(14). B. Avasarala, P. Haldar, Int. J. Hydrogen Energ. 36 (2011) 3965‒3974. Crossref
(15). M. Mustaqima, C. Liu, Turk. J. Phys. 38 (2014) 429‒441. Crossref
(16). S.B. Ogale, Adv. Mater. 22 (2010) 3125‒3155. Crossref
(17). J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P. Leclair, T. Santos, J. Moodera, Nat. Mater. 5 (2006) 298‒304. Crossref
(18). J.J. Liu, K. Wang, M.H. Yu, W.L. Zhou, J. Appl Phys. 102 (2007) 024301. Crossref
(19). R.K. Zheng, H. Liu, X.X. Zhang, V.A.L. Roy, A.B. Djurisie, Appl. Phys. Lett. 85 (2004) 2589. Crossref
(20). Iu.G. Morozov, O.V. Belousova, O.A. Belyakov, I.P. Parkin, S. Sathasivam, M.V. Kuznetcov, J. Alloy. Compd. 675 (2016) 266‒276. Crossref
(21). H.H. Nersisyan, J.H. Lee, C.W. Won, International Journal of Self-Propagating High- Temperature Synthesis 12 (2003) 149-158.
(22). E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Int. Mater. Rev. 62 (2017) 203‒239. Crossref
(23). S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, D. Jana, J. Appl. Phys. 114 (2013) 073516. Crossref
(24). I. Paseka, P. Bezdicka, A. Klarikova, K. Zaveta, J. Alloy. Compd. 274 (1998) 248‒253. Crossref
(25). A.S. Bolokang, F.R. Cummings, B.P. Dhonge, H.M.I. Abdallah, T. Moyoe, H.C. Swart, C.J. Arendse, T.F.G. Muller, D.E. Motaung, Appl. Surf. Sci. 331 (2015) 362–372. Crossref
(26). O.M. Lemine, J. Supercond. Nov. Magn. 30 (2017) 271–274. Crossref
(27). Patent Ru(11)2083487(13)C1, 1997.07.10
(28). C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1–184. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.