d0-Ferromagnetism in SHS Titanium Nitride Treated by Ball Milling

Authors

  • M.L. Busurina Merzhanov Institute of Structural Macrokinetics and of Materials Science of RAS, 8 Academician Osipyan str., 142432, Chernogolovka, Russia
  • O.V. Belousova Merzhanov Institute of Structural Macrokinetics and of Materials Science of RAS, 8 Academician Osipyan str., 142432, Chernogolovka, Russia
  • I.D. Kovalev Merzhanov Institute of Structural Macrokinetics and of Materials Science of RAS, 8 Academician Osipyan str., 142432, Chernogolovka, Russia
  • A.E. Sytschev Merzhanov Institute of Structural Macrokinetics and of Materials Science of RAS, 8 Academician Osipyan str., 142432, Chernogolovka, Russia

DOI:

https://doi.org/10.18321/ectj892

Keywords:

self-propagating high-temperature synthesis, titanium nitride, powder, d0-ferromagnetism, mechanical treatment

Abstract

In this work, the influence of mechanical treatment (mechanical milling) of the TiN titanium nitride powder produced by self-propagating high-temperature synthesis on the magnetic properties of the milled powders is investigated. The effect of d0-magnetization was observed. The TiN powders were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, specific surface area measurement, and chemical analysis. The results show that the mechanical treatment of the TiN titanium nitride powder influences the magnetization in a nonmonotonic manner. The conditions of mechanical treatment corresponding to the best value of specific magnetization of milled powders were established. The specific magnetization depended on three measured parameters: specific surface area, coherent scattering region, and average particle size. It was shown that unit cell parameters of milled TiN titanium nitride powders have not been changed with the increasing of duration milling time. The calculated values of CSR of mechanically treated powders decreased with the increasing of duration of milling time. The values of macrostrains were negative. Mechanical treatment of the TiN titanium nitride powders has led to a change in the nitrogen content from 21.4 to 20.0 wt.%. Stoichiometry of the TiN titanium nitride varied from TiN0.903-TiN0.886; therefore, the observed d0-magnetization effect is associated with a defective surface structure of mechanically treated powders.

References

(1). A. Droghetti, C.D. Pemmaraju, S. Sanvito, Phys. Rev. B 78 (2008) 140404. Crossref DOI: https://doi.org/10.1103/PhysRevB.78.140404

(2). H. Ohno, Science 281 (1998) 951‒956. Crossref DOI: https://doi.org/10.1126/science.281.5379.951

(3). J.M.D. Coey, Solid State Sci. 7 (2005) 660‒667. Crossref DOI: https://doi.org/10.1016/j.solidstatesciences.2004.11.012

(4). P. Satyarthi, S. Ghosh, P. Mishra, B.R. Sekhar, F. Singh, P. Kumar, D. Kanjilal, R.S. Dhaka, P. Srivastava, J. Magn. Magn. Mater. 385 (2015) 318‒325. Crossref DOI: https://doi.org/10.1016/j.jmmm.2015.03.029

(5). Shipra, A. Gomathi, A. Sundaresan, C.N.R. Rao, Solid State Commun. 142 (2007) 685‒688. Crossref DOI: https://doi.org/10.1016/j.ssc.2007.04.041

(6). C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan, C. Zhang, L. Yu, Z. Zhang, J. Mater. Chem. 21 (2011) 15273‒15278. Crossref DOI: https://doi.org/10.1039/c1jm12359a

(7). A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman & Hall, London, 1997, p. 696. Crossref DOI: https://doi.org/10.1007/978-94-009-0071-4

(8). P. Patsalas, S. Logothetidis, J. Appl. Phys. 90 (2001) 4725‒4734. Crossref DOI: https://doi.org/10.1063/1.1403677

(9). U. Guler, S. Suslov, V. Kildishev, A. Boltasseva, M. Shalaev, Nanophotonics 4 (2015) 269‒276. Crossref DOI: https://doi.org/10.1515/nanoph-2015-0017

(10). B. Bora, N. Aomoa, M. Kakati, H. Bhuyan, Powder Technol. 246 (2013) 413‒418. Crossref DOI: https://doi.org/10.1016/j.powtec.2013.05.038

(11). X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Nano Lett. 12 (2012) 5376‒5381. Crossref DOI: https://doi.org/10.1021/nl302761z

(12). A. Wieckowski, E.R. Savinova, C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces, Marcell Dekker, New York, 2003, 970 p. Crossref DOI: https://doi.org/10.1201/9780203912713

(13). B. Avasarala, T. Murray, W. Li, P. Haldar, J. Mater. Chem. 19 (2009) 1803‒1805. Crossref DOI: https://doi.org/10.1039/b819006b

(14). B. Avasarala, P. Haldar, Int. J. Hydrogen Energ. 36 (2011) 3965‒3974. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2010.12.107

(15). M. Mustaqima, C. Liu, Turk. J. Phys. 38 (2014) 429‒441. Crossref DOI: https://doi.org/10.3906/fiz-1405-17

(16). S.B. Ogale, Adv. Mater. 22 (2010) 3125‒3155. Crossref DOI: https://doi.org/10.1002/adma.200903891

(17). J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P. Leclair, T. Santos, J. Moodera, Nat. Mater. 5 (2006) 298‒304. Crossref DOI: https://doi.org/10.1038/nmat1613

(18). J.J. Liu, K. Wang, M.H. Yu, W.L. Zhou, J. Appl Phys. 102 (2007) 024301. Crossref DOI: https://doi.org/10.1063/1.2753589

(19). R.K. Zheng, H. Liu, X.X. Zhang, V.A.L. Roy, A.B. Djurisie, Appl. Phys. Lett. 85 (2004) 2589. Crossref DOI: https://doi.org/10.1063/1.1795366

(20). Iu.G. Morozov, O.V. Belousova, O.A. Belyakov, I.P. Parkin, S. Sathasivam, M.V. Kuznetcov, J. Alloy. Compd. 675 (2016) 266‒276. Crossref DOI: https://doi.org/10.1016/j.jallcom.2016.03.111

(21). H.H. Nersisyan, J.H. Lee, C.W. Won, International Journal of Self-Propagating High- Temperature Synthesis 12 (2003) 149-158.

(22). E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Int. Mater. Rev. 62 (2017) 203‒239. Crossref DOI: https://doi.org/10.1080/09506608.2016.1243291

(23). S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, D. Jana, J. Appl. Phys. 114 (2013) 073516. Crossref DOI: https://doi.org/10.1063/1.4818802

(24). I. Paseka, P. Bezdicka, A. Klarikova, K. Zaveta, J. Alloy. Compd. 274 (1998) 248‒253. Crossref DOI: https://doi.org/10.1016/S0925-8388(98)00536-2

(25). A.S. Bolokang, F.R. Cummings, B.P. Dhonge, H.M.I. Abdallah, T. Moyoe, H.C. Swart, C.J. Arendse, T.F.G. Muller, D.E. Motaung, Appl. Surf. Sci. 331 (2015) 362–372. Crossref DOI: https://doi.org/10.1016/j.apsusc.2015.01.055

(26). O.M. Lemine, J. Supercond. Nov. Magn. 30 (2017) 271–274. Crossref DOI: https://doi.org/10.1007/s10948-016-3895-2

(27). Patent Ru(11)2083487(13)C1, 1997.07.10

(28). C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1–184. Crossref DOI: https://doi.org/10.1016/S0079-6425(99)00010-9

Downloads

Published

17-12-2019

How to Cite

Busurina, M., Belousova, O., Kovalev, I., & Sytschev, A. (2019). d0-Ferromagnetism in SHS Titanium Nitride Treated by Ball Milling. Eurasian Chemico-Technological Journal, 21(4), 347–352. https://doi.org/10.18321/ectj892

Issue

Section

Article