Synthesis of Nanocrystalline Magnesium and Aluminum Diborides

Authors

  • M. A. Korchagin Institute of Solid State Cchemistry and Mechanochemistry, Kutateladze Str., 18. Novosibirsk, 630128; National Research Tomsk State University, Lenin Ave., 36. Tomsk, 634050, Russia https://orcid.org/0000-0003-3889-9296
  • V. E. Zarko National Research Tomsk State University, Lenin Ave., 36. Tomsk, 634050; Institute of Chemical Kinetics and Combustion, Institutskaya Str., 3. Novosibirsk, 630090, Russia
  • N. V. Bulina Institute of Solid State Cchemistry and Mechanochemistry, Kutateladze Str., 18. Novosibirsk, 630128, Russia https://orcid.org/0000-0003-4751-0705

DOI:

https://doi.org/10.18321/ectj664

Abstract

For obtaining MgB2 and AlB2 with nanometer size of coherent scattering area the technique based on the preliminary mechanical activation (MA) of initial reagents powder mixes and the subsequent reaction in the mode of the thermal explosion (TE) was used. The mentioned diborides are the promising compounds to use as a high-energy material in the ramjets and solid rocket motors because they possess very high mass- and volume-heat of combustion. Mostly, the diborides are produced under conditions of high temperatures and pressures. In this research a possibility has been explored of their producing by thermal explosion method when using preliminary mechanically activated components. The peculiarities of the technique to produce diborides are examined. Results of radiographic and electron microscope studies of the mixes of reagents after mechanical activation and of thermal explosion products are presented.

 

References

[1]. A. Gany, Intern. J. Energetic Mater. Chem. Propulsion. 2 (1-6) (1993) 91–112. <a href="https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v2.i1-6.40">Crossref</a>

[2]. M.K. King, Combust. Sci. Technol. 8 (1974) 255‒273. <a href="http://doi.org/10.1080/00102207308946648">Crossref</a>

[3]. V. Rozenband, A. Gany, Combust. Explo. Shock 50 (6) (2014) 653–657. <a href="http://doi.org/10.1134/S0010508214060057">Crossref</a>

[4]. I. Zlotnikov, I. Gotman, E.Y. Gutmanas, J. Europ. Ceram. Soc. 25 (2005) 3517–3522. <a href="http://doi.org/10.1016/j.jeurceramsoc.2004.09.009">Crossref</a>

[5]. O. I. Lomovsky, G.V. Golubkova, L.S. Dovlitova, I. Zaikovskii, I. Maly, Inorg. Mater. 46 (1) (2010) 22‒27. <a href="http://doi.org/10.1134/S0020168510010061">Crossref</a>

[6]. M.A. Korchagin, V.E. Zarko, S.M. Fomenko, Z.A. Mansurov, A.N. Alipbaev. Laboratory production of MgB2 by a thermal explosion of mechanoactivated Mg-B mixes. 46th Intern. Annual Conf. of the Fraunhofer Institute for Chemical Technology. Karlsruhe, Germany. June 23–26, 2015. P. 55-1–55-10.

[7]. M.A. Korchagin, Combust. Explo. Shock 51 (5) (2015) pp 578–586. <a href="http://doi.org/10.1134/S0010508215050093">Crossref</a>

[8]. Patent №975068 (USSR). E.G. Avvakumov, A.P. Potkin, O.I. Samarin. Planetary mill. Bulletin 1982, #43.

[9]. M.A. Korchagin, N.V. Bulina. Combust. Explo. Shock 52 (2) (2016) 225‒233. <a href="http://doi.org/10.1134/S0010508216020131">Crossref</a>

[10]. A.S. Rogachyov, A.S. Mukasyan. Gorenie dlja sinteza materialov: vvedenie v strukturnuju makrokinetiku [Combustion for synthesis of materials]. M.: FIZMATLIT, 2012. – 400 p. (in Russian).

Downloads

Published

2017-09-15

How to Cite

Korchagin, M. A., Zarko, V. E., & Bulina, N. V. (2017). Synthesis of Nanocrystalline Magnesium and Aluminum Diborides. Eurasian Chemico-Technological Journal, 19(3), 209–213. https://doi.org/10.18321/ectj664

Issue

Section

Articles