Studying of 2D Titanium Carbide Structure by Raman Spectroscopy after Heat Treatment in Argon and Hydrogen Atmospheres

Authors

  • O. Kaipoldayev al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Ye. Mukhametkarimov al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • R. Nemkaeva al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • G. Baigarinova al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • M. Aitzhanov al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • A. Muradov al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • N. Guseinov al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj194

Abstract

Here in we show the effect of heat treatment of two dimensional layered titanium carbide structure (Ti3C2Tx), so called MXene. As prepared MXene has functional groups -OH, -F, -Cl. In order to remove the functional groups we heat treated the MXene in Ar (with 0.01% O2) and H2 (with 0.01% H2O) atmospheres. We discovered the significant decrease in the amount of functional groups (-F and -Cl) and increase in the -O content, which refers to the oxidation of the material. Also we determined the optimal regime for Raman spectroscopy in order to avoid any changes in the structure of the material. We revealed that titanium carbide changes its structure at 700 °C and 900 °C into two different titanium dioxide modifications like rutile and anatase in Ar (with 0.01% O2) atmosphere. Also there are small changes occurred in Ti3C2Tx structure and formation of amorphous carbon after 700 °C treatment in H2 (with 0.01% H2O) atmosphere and formation of TiO2 (rutile) at 900 °C. Energydispersive X-ray spectroscopy (EDX) revealed the reduction of functional groups at 700 °C in both atmospheres and total disappearance of –F and –Cl and increasing the
oxygen at 900 °C. The huge increase of oxygen by atomic percent, can be explained by the initial oxygen content in argon and hydrogen gases.

 

References

[1]. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, et al., Nanoscale 7 (2015) 4598–4810. <a href=" http://doi.org/10.1039/C4NR01600A">Crossref</a>

[2]. M. Naguib, V.N. Mochalin, M.W. Barsoum and Y. Gogotsi, Adv. Mater. 26 (2014) 992–1005. <a href=" http://doi.org/10.1002/adma.201304138">Crossref</a>

[3]. M. Naguib and Y. Gogotsi, Acc. Chem. Res. 48 (2015) 128–135. <a href=" http://doi.org/10.1021/ar500346b">Crossref</a>

[4]. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M.W. Barsoum, Adv. Mater. 23 (2011) 4248–4253. <a href=" http://doi.org/10.1002/adma.201102306">Crossref</a>

[5]. Y. Xie, M. Naguib, V. Mochalin, M. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A. Kolesnikov, P. Kent, J. Am. Chem. Soc. 136 (2014) 6385–6394. <a href=" http://doi.org/10.1021/ja501520">Crossref</a>

[6]. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502–1505. <a href=" http://doi.org/10.1126/science.1241488">Crossref</a>

[7]. M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi and M.W. Barsoum, Nature 516 (2014) 78–81. <a href=" http://doi.org/10.1038/nature13970">Crossref</a>

[8]. M. Naguib, J. Come, B. Dyatkin, V. Presser, P.- L. Taberna, P. Simon, M.W. Barsoum, Y. Gogotsi, Electrochem. Commun. 16 (2012) 61–64. <a href=" http://doi.org/10.1016/j.elecom.2012.01.002">Crossref</a>

[9]. Q. Tang, Z. Zhou and P. Shen, J. Am. Chem. Soc. 134 (2012) 16909–16916. <a href=" http://doi.org/10.1021/ja308463r">Crossref</a>

[10]. A.N. Enyashin and A.L. Ivanoyskii, J. Phys. Chem. C 117 (2013) 13637–13643. <a href=" http://doi.org/10.1021/jp401820b">Crossref</a>

[11]. M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi and M.W. Barsoum, Chem. Commun. 50 (2014) 7420– 7423. <a href=" http://doi.org/10.1039/C4CC01646G">Crossref</a>

[12]. R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum and H.N. Alshareef, Chem. Mater. 27 (2015) 5314– 5323. <a href=" http://doi.org/10.1021/acs.chemmater.5b01623">Crossref</a>

[13]. H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi and M.L. Taheri, J. Mater. Chem. A, 2 (2014) 14339–14343. <a href=" http://doi.org/10.1039/C4TA02583K">Crossref</a>

[14]. Y.P. Gao, L.B. Wang, A.G. Zhou, Z.Y. Li, J.K. Chen, H. Bala, Q. K. Hu and X.X. Cao, Mater. Lett. 150 (2015) 62–64. <a href=" http://doi.org/10.1016/j.matlet.2015.02.135">Crossref</a>

[15]. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M.W. Barsoum, ACS Nano 6 (2012) 1322–1331. <a href=" http://doi.org/10.1021/ nn204153h">Crossref</a>

[16]. T. Hu, J. Wang, H. Zhang, Zh. Li, M. Huab and X. Wang, Phys. Chem. Chem. Phys. 17 (2015) 9997‒10003. <a href=" http://doi.org/10.1039/C4CP05666C">Crossref</a>

[17]. U. Balachandran and N.G. Eror. J. Solid State Chem. 42 (1982) 276‒282. <a href=" http://doi.org/10.1016/0022-4596(82)90006-8">Crossref</a>

Downloads

Published

2017-06-30

How to Cite

Kaipoldayev, O., Mukhametkarimov, Y., Nemkaeva, R., Baigarinova, G., Aitzhanov, M., Muradov, A., & Guseinov, N. (2017). Studying of 2D Titanium Carbide Structure by Raman Spectroscopy after Heat Treatment in Argon and Hydrogen Atmospheres. Eurasian Chemico-Technological Journal, 19(2), 197–200. https://doi.org/10.18321/ectj194

Issue

Section

Articles